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Abstract: Progress is needed in developing animal models of photoreceptor degeneration and
evaluating such models with longitudinal, noninvasive techniques. We employ confocal
scanning laser ophthalmoscopy, optical coherence tomography (OCT) and high-resolution
retinal imaging to noninvasively observe the retina of non-human primates with induced
photoreceptor degeneration. Photoreceptors were imaged at the single-cell scale in three
modalities of adaptive optics scanning light ophthalmoscopy: traditional confocal reflectance,
indicative of waveguiding; a non-confocal offset aperture technique visualizing scattered
light; and two-photon excited fluorescence, the time-varying signal of which, at 730 nm
excitation, is representative of visual cycle function. Assessment of photoreceptor structure
and function using these imaging modalities revealed a reduction in retinoid production in
cone photoreceptor outer segments while inner segments appeared to remain present.
Histology of one retina confirmed loss of outer segments and the presence of intact inner
segments. This unique combination of imaging modalities can provide essential, clinically-
relevant information on both the structural integrity and function of photoreceptors to not
only validate models of photoreceptor degeneration but potentially evaluate the efficacy of
future cell and gene-based therapies for vision restoration.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the advent of the ophthalmoscope in the nineteenth century [1], which provided the first
in vivo view of the retina, efforts have continually focused on improving the non-invasive
visualization of the many structures and cell classes in the retina. The use of adaptive optics
in retinal imaging, particularly in scanning light ophthalmoscopy, substantially increased the
lateral resolution that could be achieved [2,3]. Likewise, application of optical coherence
tomography (OCT) in the living eye afforded a similarly impactful axial resolution increase,
allowing individual layers of the retina to be clearly delineated [4-6]. Although these
resolution increases revolutionized our ability to visualize many structures in the living retina
and our understanding of changes that occur in retinal pathology, both AOSLO and OCT
have traditionally relied upon light from an imaging source being directly backscattered to
visualize structure. Recently, AOSLO imaging methods that use alternative strategies have
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successfully increased contrast of traditionally hard-to-visualize retinal structures. A plethora
of non-confocal imaging techniques, including split-detection [7-9], dark-field [8,10], and
offset aperture [8,11,12], have enabled historically elusive retinal structures to come to light.
Additionally, the intrinsic fluorescence of the retina, whether excited by one-photon [13,14]
or two-photon [15,16] techniques, has been exploited to yield increased cellular contrast in
several retinal layers.

Even though structural imaging remains instructive for studying cellular anatomy in vivo,
it cannot definitely conclude the functional status of a cell. In fact, there is evidence that
although a photoreceptor may not be detectable in confocal AOSLO imaging, that does not
necessarily indicate lack of cellular function [17,18]. In such areas where photoreceptors
appear dark, due to lack of waveguided light from the photoreceptors, structure can often be
revealed with a non-confocal detection method [7,19,20]. Furthermore, AO microperimetry
has shown that there can be remaining visual sensitivity in regions where cones are not
visualized in confocal AOSLO imaging [18]. Likewise, abnormal reflectance of outer retinal
layers in OCT does not necessarily indicate the functional status or even remaining structure
of photoreceptors [19,21,22].

There are several objective methods that measure functional activity in vivo on a sub-
retinal scale, such as multi-focal electroretinography [23,24], photopigment densitometry
[25-28], and intrinsic signals [29-32]. Multi-focal electroretinography can measure
functional activity of photoreceptors, but does not have sufficient resolution to distinguish the
signal from individual photoreceptors. Photopigment densitometry and intrinsic signal
measurements, while able to be performed on a cellular scale, can be highly variable and
unreliable [28,29], though recent intrinsic signal measures of photoreceptor activity using
OCT show promise [33,34]. AO microperimetry can accurately determine visual percepts
from single cones [35,36], but psychophysical methods are not practical for determining the
functional status of photoreceptors in animal models.

Intrinsic two-photon excited fluorescence (TPEF), on the other hand, has demonstrated
potential for objectively measuring photoreceptor function on a cellular scale. The TPEF
signal from photoreceptors, when measured as a function of time and in response to a visual
stimulus, has been shown to be indicative of retinoid production [37,38]. As production of
retinoids occurs most readily when the photoreceptor is actively responding to light, the time
course of TPEF reflects functional activity of the photoreceptors [38,39]. All-trans-retinol, a
molecular product of the visual cycle whose TPEF emission spectrum peaks around 490 nm
[40,41], is thought to be the dominant source of time-varying fluorescence in the
photoreceptor layer when using an excitation wavelength of 730 nm [37,38,41]. There are
likely other contributors to the fluorescence signal, including the coenzymes NAD(P)H and
FAD essential for cellular metabolism, which can be excited at 730 nm and emit in the visible
range [42]. Although these are primarily contained in the inner segment and all-trans-retinol
in the outer segment, the axial resolution of the AOSLO may preclude TPEF signal isolation
from the inner or outer segments specifically [16]. Regardless of the specific fluorophore
contributions, time course of TPEF has been shown to reliably quantify the amount of visual
pigment expected to be bleached by a visual stimulus based on extraction of all-trans-retinol
formation and clearance parameters [39]. Fluorescence from other endogenous fluorophores
is not expected to change at the same time scales or with similar fractional quantity as all-
trans-retinol [43,44]. When using an excitation wavelength of 900 nm, FAD in the inner
segments and lipofuscin precursors such as A2E in the outer segments are the most likely
contributors to the TPEF signal from the photoreceptors [16].

When applied to imaging of photoreceptors, the combination of confocal, non-confocal,
and intrinsic TPEF AOSLO imaging techniques has the potential to inform both sub-cellular
structure and visual cycle function. Non-confocal imaging has successfully been employed to
visualize photoreceptors in both healthy and diseased retinas [7,12,19,20]. Intrinsic two-
photon imaging has provided contrast in both inner and outer segments of photoreceptors
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[12,38] and has also successfully interrogated photoreceptor function [38,39,45]. Therefore,
the combination of these imaging methods can be particularly useful when applied in cases of
photoreceptor disruption, in which it may not be apparent from confocal reflectance AOSLO
imaging and/or OCT whether photoreceptor structure is intact and the cells are functioning. In
this study, we imaged non-human primates that have received a subretinal injection of a viral
vector designed to locally damage photoreceptors [46] with confocal scanning laser
ophthalmoscopy (¢cSLO) and OCT. In regions of photoreceptor disruption, we imaged the
photoreceptor layer in three AOSLO imaging modalities: confocal reflectance, multioffset
aperture, and TPEF. Additionally, we tracked the time course of TPEF from the
photoreceptors to investigate functional activity. Finally, to validate our imaging results, we
performed histology on one retina.

2. Methods
2.1 Animal preparation and subretinal injections

Three cynomolgus monkeys (macaca fascicularis) and one rhesus monkey (macaca mulatta)
were injected subretinally with a viral vector designed to damage photoreceptors through
targeting of microRNAs 182 and 183, which are strongly expressed in primate retina [46,47].
Monkeys will hereafter be described by an identification number, listed with demographical
characteristics in Table 1. Animals were handled according to the protocols prescribed and
approved by the University of Rochester’s Committee on Animal Resources and in
accordance with the ARVO Animal Statement for the Use of Animals in Ophthalmic and
Vision Research.

An experienced retinal surgeon, one of the authors, performed all subretinal injections.
Prior to injection, monkeys were anesthetized with 6 mg/kg of ketamine and 0.15 mg/kg of
medetomidine. The eye and palpebral fissure were cleansed with 50% strength betadine/saline
and rinsed with sterile saline. Healon OVD (Abbott Medical Optics Inc., Santa Ana, CA) or
Genteal (Alcon Laboratories, Inc., Fort Worth, TX) was applied to maintain hydration, and a
flat disposable vitrectomy lens (Volk Optical Inc., Mentor, OH) was placed on the eye. A
lateral canthotomy was performed to increase the palpebral fissure. A 25 gauge valved trochar
cannula was inserted into the eye with the appropriate entry system (Alcon Laboratories Inc.,
Fort Worth, TX) and a light pipe (Bausch and Lomb Millennium, c¢x9625, Bausch and Lomb
Incorportated, Kingston-upon-Thames, United Kingdom) was inserted through it for surgical
visibility. A 23 gauge valved trochar cannula (Alcon Laboratories Inc., Fort Worth, TX) was
inserted into the opposite side of the eye and was used to place an extendible 41 gauge
subretinal injection needle (Mfd. by D.O.R.C. International, Zuidland, The Netherlands, dist.
by Dutch Ophthalmic, Exeter, NH) pre-loaded with virus. When the injector engaged the
retina, a pneumatic picopump (World Precision Instruments, PV830, Sarasota, FL) was used
to deliver a 20 pound-force per square inch, 2-4 second pulse in which 25 ul of virus was
injected into the subretinal space.

Table 1. Summary of Non-Human Primate Subretinal Injections

Location of bleb Bleb contact

Monkey ID  Species Sex Age (w.r.t. fovea) foveal region?
Ml fascicularis F 4 superotemporal Y
M2 fascicularis M 6 superotemporal Y
M3 fascicularis F 6 superonasal Y
M4 mulatta M 11 superonasal N

Blebs were placed in the central 30 degrees of the retina in the locations listed in Table 1.
With the exception of monkey M4, the inferior edge of all subretinal blebs contacted the
foveal region. Once the bleb was made, antibiotics (50-100ul of Vancomycin, 1mg/0.1ml and
50-100ul of Ceftazidime, 2mg/0.1ml) were injected into the intravitreal space. Pain relief was
provided by prophylactic injections of 0.12 mg/kg of Buprenorphine SR (compounded by
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ZooPharm, Windsor, CO), given subcutaneously, as well as an intramuscular injection of 0.2
mg/kg of Meloxicam. Topical Maxitrol was placed on the eye and the monkeys were given an
intramuscular injection of 0.2 mg/kg of Antisedan (Orion Pharma, Dhaka, Bangladesh) to
reverse anesthesia. Retinal detachments due to the subretinal injections typically resolved
within 24 hours.

2.2 Confocal SLO and OCT imaging

Changes in the retina following each injection were tracked with a confocal scanning laser
ophthalmoscope (Spectralis HRA + OCT, Heidelberg Engineering, Heidelberg, Germany).
For ¢SLO and OCT imaging, monkeys were anesthetized with 6 mg/kg of ketamine and 0.15
mg/kg medetomidine. Reversal of anesthesia upon completion of imaging was accomplished
by an intramuscular injection of 0.2 mg/kg of Antisedan. Images of the subretinal bleb and
surrounding region were obtained with a 30° square field-of-view in the following modalities:
blue-light reflectance (BR; 488 nm), blue-light autofluorescence (BAF; excitation 488 nm,
emission >510 nm), infrared reflectance (IR; 815 nm), and infrared autofluorescence (IRAF;
excitation 786 nm, emission 810-840 nm). Spectral-domain OCT of the bleb and surrounding
region was performed with line scans spaced 11 to 60 um apart. cSLO and OCT imaging was
performed prior to injection and once every one to four weeks post-injection. The total
duration of follow-up imaging post-injection ranged from 8 to 30 months. During this period,
c¢SLO images and OCT scans were visually inspected for changes in reflectivity or
autofluorescence intensity. All OCT images are displayed on a logarithmic intensity scale.

2.3 Adaptive optics scanning light ophthalmoscopy

An ophthalmoscope designed for excitation and collection of two-photon fluorescence from
the living primate eye was used to capture high resolution images of photoreceptors in the
injected non-human primates. In preparation for imaging, macaques were anesthetized with
ketamine (10-20 mg/kg) and midazolam (0.25 mg/kg) and secured in a stereotaxic device in
ventral recumbency. After intubation, anesthesia was maintained by inhalation of isofluorane
(1-5%). To reduce eye movements, paralysis was induced with intravenous vecuronium (40-
80 pg/kg/hr) or rocuronium (200-400 pg/kg/hr), administered for up to a 6 hour period.
Respiration was maintained by a ventilator during paralysis. Mydriasis and cycloplegia were
induced with 1 to 2 drops each of phenylephrine hydrochloride (2.5%) and tropicamide (1%).
A rigid gas permeable contact lens, coated with Genteal (Alcon, Fort Worth, TX, USA), was
placed on the cornea to maintain hydration and correct base refractive error. The eye was held
open with a lid retractor, and the animal’s pupil was aligned to the exit pupil of the AOSLO.

Details of the system for AOSLO imaging have been described elsewhere [38]. Briefly, a
laser diode (840 nm, 40 uW) was used for wavefront sensing and an ultrashort pulsed
Ti:Sapphire laser (730 nm or 900 nm, 3.5 to 4.5 mW) for both reflectance imaging and
excitation of intrinsic two-photon fluorescence. An additional source, a superluminescent
diode (SLD; 796 nm, 200 uW), was focused at the same retinal plane as the Ti:Sapphire laser
and was used to capture reflected light that provided high signal-to-noise imaging for image
registration. Light levels listed are the average power over a 7.5 mm beam diameter incident
on the cornea. Locations for AOSLO image acquisition were selected from regions of
hyporeflectivity in the outer retina identified in OCT scans. These regions of interest were
correlated to ¢SLO fundus images using custom MATLAB (Mathworks, Natick, MA)
software to enable navigation to selected retinal locations using en face vasculature patterns.
Videos of the photoreceptor mosaic at these locations of 1.1 (vertical) by 1.3 (horizontal)
degrees in size were captured in three AOSLO modalities: confocal reflectance, multioffset
aperture, and TPEF.

In the confocal reflectance modality, a photomultiplier tube (PMT) with a pinhole in the
confocal position (Fig. 1(a)) captured directly backscattered light primarily emanating from
the photoreceptor inner/outer segment boundary and the outer segment tip [48-50]. The
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AOSLO had two confocal reflectance detection channels, one for collecting reflected 796 nm
light from the SLD using a 2.5 Airy disk diameter (ADD) pinhole, and one for collecting
reflected 730 nm or 900 nm light from the Ti:Sapphire laser using either a 1.4 or 3.4 ADD
pinhole. The confocal position of the pinhole in the Ti:Sapphire laser detection channel was
optimized in the X, y, and z directions at the beginning of each imaging session via an
automated algorithm that positioned the pinhole at the peak intensity of light backscattered
from the primate retina [12,51].

The Ti:Sapphire laser detection channel was also used for multioffset imaging. This
modality has been described elsewhere [12]. Briefly, the pinhole and PMT were sequentially
displaced from the confocal position in opposite directions by either 4 or 8 ADD (Fig. 1(b)).
This enabled capture of scattered light that was not primarily waveguided by the inner
segments of the photoreceptors and thus was not focused to the confocal position in the
detection channel [12]. Images from orthogonal non-confocal pinhole positions were
combined in a manner similar to split detection by subtracting the two images and
normalizing by their sum for each pixel, which provided visualization of the photoreceptor
inner segments [7].

Pinhole PMT

Fig. 1. AOSLO detection channel configurations for (a) confocal reflectance and (b)
multioffset, where the pinhole and PMT are displaced from the confocal position.

TPEF was excited by the Ti:Sapphire laser and emitted fluorescence was collected with a
PMT in a non-descanned configuration [16,38]. For 730 nm excitation, a filter pair (ET680sp-
2P8 and E550sp-2p; Chroma Technology, Bellows Falls, VT) was employed to mitigate
bleed-though from the laser and collect TPEF <550 nm. For 900 nm excitation, the 550 nm
short pass filter was removed and TPEF was collected <680 nm.

TPEF and multioffset videos were collected in the same retinal location sequentially.
During each acquisition, SLD confocal reflectance videos were simultaneously collected.
Additionally, during TPEF imaging, a confocal reflectance video from the Ti:Sapphire laser
was recorded. For each imaging modality, the axial focus of the laser was held constant for a
given imaging location. Sinusoidal rectification of the video frames from resonant scanner
motion was performed during image acquisition using a previously described method [52].
During post-processing, a custom video registration algorithm was employed to correct for
movement of the primate eye due to heartbeat and respiration. A single frame from a SLD
confocal reflectance video at a given retinal location was used as a reference to register the
video frames of the TPEF, offset aperture, and Ti:Sapphire confocal reflectance videos, so
that the videos from each modality were co-registered.
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2.4 Two-photon fluorescence time course

In healthy photoreceptors, the amount of all-frans-retinol in the outer segment is expected to
increase after dark adaptation in response to a continuous light exposure from the 730 nm
imaging laser, eventually plateauing as an equilibrium is reached between its formation and
clearance [38,39]. The corresponding rise and plateau of the TPEF, therefore, is indicative of
a normally functioning visual cycle. To evaluate the function of photoreceptors outside, along
the margin of, and within areas of marked photoreceptor disruption, three different regions of
interest (ROIs) in registered videos of TPEF collected from the photoreceptors were selected
with ImageJ (NIH, Bethesda, MD) for analysis:

1) Normal-appearing photoreceptors in a contiguous mosaic were masked by manually
segmenting a polygonal ROI which encompassed the region where the contiguous
mosaic persisted.

2) Normal-appearing photoreceptors in a non-contiguous mosaic (i.e. within a region of
low reflectivity) were segmented individually by drawing an elliptical mask around
each photoreceptor, and individual ellipses were combined into a single ROI using a
union operator.

3) Low-reflectivity photoreceptors were masked by hand-drawing a polygonal ROI
which encompassed the region and then excluding the normal-appearing
photoreceptors using an exclusive or operator.

The TPEF time course for each of the three ROIs was obtained by plotting the mean pixel
value versus time for only the relevant masked portion of each registered TPEF video frame.
Using MATLAB, the TPEF time course of the segmented data was fit with exponential

. AF . . .
functions of the form y =? e +1, where the fitting parameter 1 is the time constant of
. . AF . .. .
TPEF increase and the fitting parameter 3 is the relative increase in TPEF [45].

2.5 Histological preparation

Monkey M1 was euthanized for histological analysis of the bleb region 30 months after
injection of the virus. The animal was perfused with 2.5% gluteraldehyde and 4%
paraformaldehyde in 0.1 M phosphate buffer, and 100 pl of the same fixative was injected
into the vitreous of the right eye, which was then enucleated. After the anterior segment was
removed, the eye was immersion fixed for one hour at room temperature and then overnight
at 4° C. Then the eye cup was trimmed to remove peripheral retina. The tissue was
dehydrated through ascending concentrations of isopropanol and embedded in a glycol
methacrylate plastic for soft tissue, Technovit H7100 (#14653, Electron Microscopy
Sciences, Hatfield, PA, USA). The tissue and plastic polymerized in embedding molds
(#70176-30, Electron Microscopy Sciences, Hatfield, PA, USA) at room temperature. A
Microm HM355S rotary microtome (MICROM International GmbH, Germany) was used to
section the tissue block at 2.5 um. The sections were collected on drops of water on + charged
slides and dried on a hot plate at 75°C. A two part stain was used to stain nuclei blue and
cytoplasm pink. The stain was a modification by Griffin and Fahrenbach, Oregon Regional
Primate Research Center, of [53]. A solution of methylene blue (#73881, Merck & Co. Inc.,
Rahway, NJ, USA) and azure II (#3112, Polysciences, Inc., Rahway, NJ, USA) was added to
the slides dropwise on a hot plate at 75°C. After rinsing and drying, basic fuchsin (#F-98,
Fisher Scientific Co., Fair Lawn, NJ, USA) was added in the same manner. Slides were again
rinsed, dried, and coverslips applied. The retinal location of each section was determined by a
comparison of anatomical features to those in the cSLO images to precisely align histology to
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regions of AOSLO imaging. Sections were imaged with a light microscope in brightfield
(BX53, Olympus, Tokyo, Japan) with a 60x oil immersion objective (UPlanSApo, Olympus,
Tokyo, Japan).

3. Results
3.1 Evidence of damage to photoreceptors in confocal SLO and OCT imaging

Due to ocular inflammation as a result of the injections, interpretable cSLO images of the
retina could not be obtained until 3—6 weeks after injection. After inflammation resolved,
reflectance and autofluorescence images of the retina captured using the cSLO revealed that
structural changes had occurred within the bleb region in all monkeys relative to their
respective pre-injection condition.

Figure 2 shows representative images from M1 in each ¢cSLO modality prior to and 28
weeks after injection. All monkeys in which the bleb contacted the foveal region developed a
distinctive, patchy pattern of acute reflectance loss in BR images near the area where the bleb
coincided with the foveal region. BAF was minimally affected for most monkeys within the
bleb region (Fig. 2(h)), though M4 had more pronounced BAF reduction throughout the bleb
(data not shown). Either slight hyperreflectivity or no change was observed within the bleb
region in IR images (Fig. 2(b)). IRAF images showed reduced intensity in some areas within
the bleb region (Fig. 2(d)); however, this observation may be confounded by the IRAF
reduction that has been observed as a result of AOSLO imaging. IRAF reduction is slow to
recover, taking up to several months to reach baseline values [54].

OCT B-scans taken through regions of patchy hyporeflectance in BR images revealed
disruption localized to the outer retina (Fig. 3). Regions of reduced BR and OCT
hyporeflective zones in the outer segments of the photoreceptors were well-correlated (Fig.
3). Reflectivity changes in BR and OCT remained stable and did not progress or recover after
initial observation for the entire duration of follow-up imaging (8 to 30 months post-
injection). Regions of reduced BR that correlated with OCT hyporeflective zones will be
referred to here as affected regions. Regions of apparently normal BR and OCT will be
referred to as unaffected regions.

3.2 Reduced waveguiding and TPEF in affected photoreceptors

Figure 4 shows AOSLO images from affected regions within the bleb at approximately 1 to 2
degrees eccentricity in the three monkeys in which the bleb contacted the foveal region.
Photoreceptors appeared substantially darker in reflectance confocal AOSLO images of the
affected region, suggesting impaired waveguiding in these cones compared to the
surrounding, normally waveguiding cones (Fig. 4(a),(d),(g)). In these affected photoreceptors,
TPEF signal at 730 nm excitation was reduced relative to unaffected cells (Fig. 4(b),(e),(h)).
Although affected photoreceptors had minimal reflectance and TPEF, multioffset revealed
that cellular structure remained in these regions, most likely arising from intact inner
segments (Fig. 4(c),(f),(1)) [7]. The contrast of photoreceptor structure within these affected
regions was notably greater in multioffset images.

Additional TPEF imaging at 900 nm excitation was performed in M1 and M2 (Fig. 5). In
affected photoreceptors, there was a reduction of 75 + 3% in TPEF signal excited by 730 nm
when compared to unaffected photoreceptors (Fig. 5(a),(c)). TPEF signal excited by 900 nm
was also diminished in affected photoreceptors, albeit by a lesser amount of 22.4 + 1.3% (Fig.
5(b),(d)). However, distinct from TPEF images at 730 nm excitation, a cellular mosaic could
still be clearly distinguished in affected regions in the TPEF images at 900 nm excitation.

In M1, M2, and M3, photoreceptors in affected regions were almost entirely cones given
the proximity of the affected regions to the fovea. However, in M4, the affected region was
further from the fovea, including both rod and cone photoreceptors (Fig. 6). Confocal
reflectance images from approximately 5 degrees eccentricity revealed that many cones in the
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affected region were dark, whereas rods interspersed between the cones appeared bright (Fig.
6(a)). Just as in the aforementioned cases (Fig. 4), cones that had reduced waveguiding also
had diminished TPEF (Fig. 6(b)). Again, multioffset revealed remaining structure for cones
dark in reflectance and TPEF modalities (Fig. 6(c)). In general, rods appeared bright in both
reflectance and TPEF; however, most were not clearly distinguishable in multioffset images,
as has been noted in previous imaging of rods with split-detection [7].

Pre-Injection Post-Injection

IR

IRAF

BR

BAF

Fig. 2. ¢SLO images of M1 prior to (a,c,e,g) and 28 weeks after (b,d,f,h) subretinal injection of
virus in four modalities: IR (a,b); IRAF (c,d); BR (e,f); BAF (g,h). In (b), white arrow denotes
injection site, and white dashed circle the extent of the bleb. Scale bar: 1 mm.
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Fig. 3. ¢SLO (a,c) and corresponding OCT (b,d) of affected regions within the bleb for
monkey M1 (a,b) and M2 (c,d). The dotted white line in ¢SLO images is indicative of the
position of the OCT B-scans. White arrows mark positions of disruption in both the ¢SLO
images and corresponding OCT B-scans. Scale bar: horizontal, 200 pum; vertical, 100 pm.

Confocal Reflectance TPEF _Offset ?eﬂure
' e

Fig. 4. AOSLO imaging of affected regions within the bleb of three monkeys. Images of the
same location in three modalities are presented: 730 nm confocal reflectance (a,d,g), TPEF
(b,e,h), and multioffset (c,f,i). Scale bar: 50 um.
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730 nm excitation

Fig. 5. TPEF imaging of affected regions in two monkeys at different excitation wavelengths.
Images of the same location in each monkey are presented at 730 nm excitation (a, ¢) and 900
nm excitation (b, d). Scale bars: 50 um.

Confocal Reflectance Offset Aperture

TPEF

Fig. 6. AOSLO imaging of an affected region on the inferotemporal edge of the bleb in
monkey M4, in three modalities: 730 nm confocal reflectance (a), TPEF (b), and multioffset
(c). The orange arrow denotes a cone photoreceptor that appears to be waveguiding (a), is
bright in TPEF (b), and has low contrast in multioffset (c). The blue arrow denotes a cone
photoreceptor that appears dark in reflectance (a) and TPEF (b), but has high contrast in
multioffset (c). The white arrow denotes a rod that is bright in reflectance (a) and TPEF (b),
but could not be visualized in multioffset (c). Scale bar: 50 um.

3.3 Altered time course of two-photon fluorescence in affected photoreceptors

The time course of photoreceptor TPEF intensity in response to the imaging laser has been
previously characterized in healthy retina using the same system and imaging paradigm
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reported here, albeit with different powers of the Ti:Sapphire imaging laser [38,45]. The time
course of TPEF was extracted for unaffected regions, affected regions, and normal-appearing
photoreceptors interspersed within an affected region (Fig. 7). In unaffected regions with a
contiguous photoreceptor mosaic in confocal reflectance and TPEF images, TPEF was shown
to increase and plateau, indicating normal function of the visual cycle. Exponential fits to the
TPEF time course in an unaffected region in M2 (Fig. 7(b)) yielded a time constant of 6.1 £
0.3 s and relative TPEF increase of 0.44 + 0.016. Photoreceptors that were near affected
regions and were not part of a contiguous mosaic, but otherwise exhibited normal
waveguiding, also produced a functional response to the imaging laser with a time constant of
54 + 0.7 s and relative TPEF increase of 0.36 + 0.03. In affected regions, where
photoreceptors exhibited poor waveguiding, increase in TPEF at the onset of the imaging
laser was much less evident, with a time constant of 39 + 9 s and relative TPEF increase of
0.15 £ 0.012. Relative to unaffected photoreceptors, the longer time constant coupled with
less relative increase in TPEF observed in affected photoreceptors indicates impaired function
of the visual cycle.

o
o

Fluorescence Signal (a.u.)
o o
N H

0 10 20 30 40 50 60 70 80
Time (s)

Fig. 7. The time course of TPEF for M2 in the same location as Fig. 4(d)-(f). Image
segmentation is shown in (a), with the blue rectangle encompassing a normal region and the
orange rectangle encompassing an affected region. Areas outlined in yellow are excluded from
the affected region, and are plotted separately in their corresponding color in (b). Data points
in (b) represent approximately 0.8 seconds of binned data of each of the regions in (a), with
error bars representing standard error of the mean. Plotted lines in (b) are exponential fits to
the data. Scale bar, 50 um.

3.4 Damage to photoreceptor outer segments observed in histology of affected
regions

Figure 8 presents histological sections through affected regions imaged with AOSLO imaging
modalities in monkey M1. In general, regions designated as affected based on in vivo imaging
modalities exhibited outer segment loss, while inner segments largely remained intact. In
some affected regions, thinning of the outer nuclear layer was observed, as well as some loss
of pigmentation in the retinal pigment epithelium (RPE).
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Fig. 8. Two histological sections (b and c) through an affected region in monkey MI,
horizontally aligned to TPEF imaging at 730 nm excitation (a). Here, lines A and B denote
angle of each histological section with respect to the en face imaging. ONL, outer nuclear
layer; Ch, choroid. Scale bar, 50 pm.

4. Discussion

Confocal reflectance AOSLO has been previously shown to complement imaging with
clinical instrumentation in evaluation of photoreceptor structure [55]. The healthy
photoreceptor mosaic seen in AOSLO confocal reflectance images is enabled by waveguiding
of light through the inner segment and the direct backscattering of light from both the
photoreceptor inner/outer segment boundary and the outer segment tip [48—50]. As such, it is
presumed that cones that are dark in confocal reflectance images, yet show inner segment
structure in non-confocal images, are cones that could have compromised outer segment
integrity [7]. In particular, poor photoreceptor waveguiding in confocal reflectance images
due to a variety of diseases or ocular trauma typically corresponds with outer retinal
disruptions in OCT [56,57]. The application of non-confocal AOSLO in such situations has
revealed that even in regions where photoreceptors have reduced reflectance and outer retinal
disruptions are visible in OCT, there can be remaining inner segment structure, lending to the
technique an ability to present a clearer delineation of the bounds and extent of photoreceptor
disruption [7]. In our model of induced photoreceptor degeneration in macaque, we find that
outer retinal disruption in OCT does correlate well with poor photoreceptor waveguiding as
revealed in confocal reflectance imaging, and furthermore, non-confocal multioffset imaging
reveals remaining inner segment structure in those regions. The reduced TPEF signal in these
cones adds specificity to this interpretation. All-trans-retinol, presumably the dominant time-
varying fluorophore excited at 730 nm, is produced only in the outer segments of the cones.
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At the very least, its drastic reduction would indicate that affected photoreceptors have
inhibited production of all-trans-retinol. Further confirmation, and indication of functional
activity, is provided through the time course of TPEF at 730 nm excitation. Unaffected
photoreceptors exhibit a characteristic TPEF increase which has been shown to correlate with
production of all-frans-retinol, demonstrative of a functioning visual cycle in response to
continuous illumination from the 730 nm imaging laser [38]. In affected photoreceptors, a
minimal and significantly slower increase was detected (Fig. 7). TPEF at 900 nm excitation
yields additional evidence of the extent of inner and outer segment structure and function.
Although the relative contribution of fluorophores is not yet known, it is likely primarily a
combination of FAD, localized to the inner segments, and lipofuscin precursors such as A2E,
localized to the outer segments. Remaining structure visualized at 900 nm excitation adds
additional indication that inner segments are intact.

The implication of compromised outer segment integrity from the in vivo imaging is
corroborated with definitive histological evidence from one retina. In affected regions of
retina, many outer segments are indeed completely missing, while inner segments and
photoreceptor cell bodies remain primarily intact, though the outer nuclear layer does thin
slightly (Fig. 8). There is also a decrease in RPE pigmentation, consistent with the reduction
in IRAF seen in ¢SLO imaging (Fig. 2(c),(d)) where signal is thought to originate from
melanin within both the RPE and choroid [58]. Therefore, application of these three AOSLO
imaging modalities holds great promise as a means to noninvasively and objectively evaluate
not only inner and outer segment structure, but also functional status, of diseased or
degenerating photoreceptors. Additionally, confirmation of outer segment but not inner
segment loss provides evidence regarding the relative contribution of the outer and inner
segments to the photoreceptor TPEF signal at both 730 and 900 nm excitation. It is apparent,
with 730 nm excitation, that all-frans-retinol is indeed the dominant fluorophore in the
photoreceptors, with relatively little contribution from inner segment TPEF, including
NAD(P)H and FAD. At 900 nm excitation, the converse appears to be true: TPEF from inner
segments is greater, likely due to FAD, while outer segment TPEF, likely due to lipofuscin
precursors, is lesser.

In the present model of photoreceptor degeneration, there is seeming specificity of
damage to cones, as rods within affected regions remain bright in confocal reflectance and do
not exhibit drastic reduction of TPEF (Fig. 6). Cone outer segments appear vulnerable to a
wide range of challenges to the outer retina such as autoimmune or infectious disorders [59].
Selective damage to cone outer segments, with preservation of inner segments and cone
somas in the inner nuclear layer, has been reported in chronic progressive cone disorders such
as achromatopsia [7,22] and reversible outer segment losses called multiple evanescent white
dot syndrome, which may be caused by autoimmunity or infection [59]. In both disorders,
substantial loss of cone outer segments produces complete blindness. In achromatopsia, loss
of function in cones is due to a missense mutation of the cone alpha transducin and can be
slightly progressive. On the other hand, white dot syndrome almost always shows recovery
even without treatment, and recovery of even a modest number of outer segments, shown by
adaptive optics imaging, may produce substantial visual recovery [59]. Retinal observations
in achromatopsia patients are similar to the findings reported here, including regional changes
in outer segments in OCT images, and preserved inner segments indicated by offset imaging
[7]. Here, we also find that the damage does not appear to reverse, at least within the 8 to 30
month duration of our follow-up imaging.

Because cone outer segments are thought to be vulnerable to such general physiological
stressors as autoimmunity and infection, we cannot determine if the cause of the outer
segment damage observed here was identical to that in the Busskamp et al. study [46]. The
present study also involved such challenges as the transient (< 24 hour) retinal detachment
that subretinal injections produce, and although not expected to cause irreversible
photoreceptor damage, its impact cannot be completely ruled out [60,61]. Additionally,
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adeno-associated viruses (AAVs) have been reported to cause immunotoxicity in the retina
and it is possible that the cone outer segment loss was a consequence of AAV-mediated
toxicity [62,63]. Nevertheless, although the mechanism of photoreceptor damage seen here
has not been elucidated, this macaque model of photoreceptor degeneration may prove useful
for testing of vision restoration methods. Certainly, challenges remain, such as the patchy,
random nature of the degeneration, and also the seeming specificity of damage to cones.
However, it is likely that visual function is impaired in affected regions, especially near the
fovea where rods would not contribute to remaining visual sensitivity in the region. The
remaining photoreceptor structure of inner segments and cell somas lends itself particularly
well to cone rescue through optogenetic strategies [64].

Furthermore, although TPEF imaging with AOSLO has not yet been implemented in
humans, it has potential to be an objective measure to inform the functional status of
photoreceptors in damaged or degenerating retina [38,39,45]. Since the aforementioned
diseases exhibit very similar phenotypes to the macaque model used here (i.e. an impairment
of cone outer segments), TPEF, along with confocal reflectance and non-confocal AOSLO
imaging, could be used to determine not only the amount of remaining photoreceptor
structure in degenerating retina, but also provide an objective correlate of remaining visual
sensitivity, all at the individual photoreceptor level. These three imaging AOSLO modalities
could be used to noninvasively track longitudinal changes in retinal disease, as well as
identify suitable candidates for gene therapy, optogenetics, or other vision restoration
methods.
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