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across observers emerged naturally as a consequence of the measured individual variation in the relative numbers of L, M,
and S cones. The model’s output is also consistent with the appearance of larger spots and of sinusoidal contrast
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the fine structure of the retinal mosaic.

Keywords: color appearance/constancy, computational modeling, photoreceptors, structure of natural images

Citation: Brainard, D. H., Williams, D. R., & Hofer, H. (2008). Trichromatic reconstruction from the interleaved cone mosaic:
Bayesian model and the color appearance of small spots. Journal of Vision, 8(5):15, 1–23, http://journalofvision.org/8/5/15/,
doi:10.1167/8.5.15.

Introduction

Trichromatic sampling

Human color vision is mediated by three classes of
retinal cones, the L, M, and S cones. That there are only
three classes means that color vision is trichromatic: Two
lights with distinct spectra that produce the same photo-
pigment isomerization rates in all three classes will be
indistinguishable to the visual system. Such lights are
referred to as metamers. Metamerism is a special case of
aliasing, where two physically distinct images produce the
same responses in an extended array of photoreceptors.
Standard treatments of human trichromacy (e.g., Brainard,

1995; Kaiser & Boynton, 1996; Wandell, 1995; Wyszecki
& Stiles, 1982) generally neglect the interleaved structure
of the retinal cone mosaic. These treatments of trichromacy
break down, however, at fine spatial scales. This is because
there is at most one cone sensing light at any particular
location, so that two retinal images that differ in both their
spatial and spectral properties can be aliases of one another
(Brainard, 1994; Brainard & Williams, 1993; Williams,

Sekiguchi, Haake, Brainard, & Packer, 1991). This idea is
illustrated in Figure 1.
The computational problem posed by interleaved

mosaic design is as follows. The visual system has
available the isomerization rates of one cone class at each
cone location. To provide a representation of a spatially
varying trichromatic signal, the visual system must
reconstruct the isomerization rates of the two missing
cone classes at each location. It is clear that this is an
underdetermined estimation problem since direct informa-
tion about the isomerizations of the two missing cone
classes at each location is eliminated by interleaved
sampling. How the visual system copes with the informa-
tion loss is largely unknown. In this paper, we present a
model of the process and compare its predictions with
psychophysical data and observations.

Psychophysical data

Historically, it has been difficult to identify empirical
phenomena that result from interleaved trichromatic
sampling and thus allow study of the computations related

Journal of Vision (2008) 8(5):15, 1–23 http://journalofvision.org/8/5/15/ 1

doi: 10 .1167 /8 .5 .15 Received August 20, 2007; published May 29, 2008 ISSN 1534-7362 * ARVO

http://color.psych.upenn.edu/
http://color.psych.upenn.edu/
mailto:brainard@psych.upenn.edu?subject=http://journalofvision.org/8/5/15/
mailto:brainard@psych.upenn.edu?subject=http://journalofvision.org/8/5/15/
http://www.cvs.rochester.edu/williamslab/p_williams.html
http://www.cvs.rochester.edu/williamslab/p_williams.html
mailto:david@cvs.rochester.edu?subject=http://journalofvision.org/8/5/15/
mailto:david@cvs.rochester.edu?subject=http://journalofvision.org/8/5/15/
http://www.opt.uh.edu/faculty/hhofer
http://www.opt.uh.edu/faculty/hhofer
mailto:hhofer@optometry.uh.edu?subject=http://journalofvision.org/8/5/15/
mailto:hhofer@optometry.uh.edu?subject=http://journalofvision.org/8/5/15/
http://journalofvision.org/8/5/15/


to this sampling. Although aliasing of intensity variation
into chromatic variation is a routine artifact in digital
color imaging (see Figure 1), demonstrations of parallel
phenomena in humans have been elusive. Williams et al.
(1991) argued that an effect known as Brewster’s colors,
wherein colored patterns can be seen on top of high-
contrast isochromatic gratings, represent one such exam-
ple. They suggested that the fleeting nature of the effect
resulted from clever processing by the visual system.
Nonetheless, the aliasing artifacts were subtle and difficult
to exploit for systematic modeling.
Filling-in at the tritanopic area (e.g., Williams,

MacLeod, & Hayhoe, 1981) provides another example of
spatio-chromatic aliasing. Brainard and Williams (1993)

showed that the perceived S-cone component of the
stimulus at the tritanopic area is influenced by L- and
M-cone signals, a direct empirical verification that signals
from different cone classes can interact in the reconstruc-
tion algorithm used by the visual system.
Recently, Hofer, Singer, et al. (2005) reported experi-

ments where observers named the color appearance of
small flashed retinal spots. By using adaptive optics to
correct the aberrations in individual observers, they were
able to present spots whose retinal size was similar in scale
to the acceptance aperture of single cones. Moreover, they
were able to measure the spatial arrangement and classes
of the cones in the same general retinal region as they
presented the flashed spots. Their experiment provides

Figure 1. Aliasing can occur with interleaved mosaics. (Left panel) The figure illustrates how two physically distinct signals that vary
spatially and spectrally can produce the same responses in an interleaved mosaic of cones. For simplicity, the example is for a single
spatial dimension and a retina containing only L and M cones. Once the spectral sensitivities of the cones are taken into account, the
spatio-spectral image is described by the L- and M-cone isomerization rates at each spatial location (L and M signals). Two distinct
images are represented in the figure, one by the solid line in both plots and one by the dashed line in both plots. The solid line shows an
image consisting of a 3 cycle per image isochromatic grating in which L and M signals vary together. The dashed line shows a 1 cycle per
image red/green grating in which L and M signals vary in counterphase. These images are sensed by a mosaic consisting of 8 cones, 4 L
cones and 4 M cones, arranged in a regular interleaved fashion. Locations of cones are shown as triangles at the top of each plot. The
two images have the same L-cone signal at each location where there is an L cone, and the same M-cone signal at each location where
there is an M cone. Thus, the two images are aliases, as they produce the same responses in each retinal cone receptor. Note that this
aliasing occurs even though both patterns have spatial frequencies below the 4 cycle per image Nyquist rate for the mosaic as a whole.
Panel adopted from Brainard (1994). (Right panel) Aliasing of the sort shown in the left panels occurs in digital color imaging. Most digital
cameras employ interleaved R, G, and B sensors, analogous to the interleaved cone sampling of the human retina. In the image on the
right, the high-spatial frequency intensity variation of the jacket is rendered by the camera as its lower spatial frequency red/green alias.
Image courtesy of J. Kraft; the face of the photographic subject has been pixelated to preserve anonymity.
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an opportunity to study the reconstruction algorithm
employed by the visual system, since a report of the color
name of a flash that stimulates only one cone implies
estimates of the signals seen by the two cone classes
missing at the spot location.

Bayesian model of trichromatic
reconstruction

Here we report a quantitative model of the experiment
of Hofer, Singer, et al. (2005). The model is based on a
Bayesian algorithm that solves the general reconstruction
problem posed by interleaved spectral sampling. We
implemented the algorithm using measurements of indi-
vidual observer cone mosaics and optics and used
simulation to evaluate the algorithm’s performance for
the small spot experiment. This allowed us to compare the
human data to the algorithm’s predictions in aggregate.
We find that the model provides a good first-order account
of the data, and that it also accounts for other color
appearance phenomena. Moreover, the model makes
testable predictions for the results of future experiments.

Methods

Measurements of small spot colors

The experimental procedures and results are described
in detail by Hofer, Singer, et al. (2005). Briefly, an
adaptive optics system was used to measure and correct
for aberrations in the optics of individual observers. This
enabled resolution of individual cones in acquired fundus
images. Retinal densitometry performed using the adap-
tive optics system (Hofer, Carroll, Neitz, Neitz, &
Williams, 2005; Hofer, Singer, et al., 2005; Roorda &
Williams, 1999) allowed determination of the location and
class (L, M, or S) of individual cones in small retinal
regions at È1- retinal eccentricity. Such regions were
characterized for 5 observers, and È12V � È12V sub-
regions of characterized mosaic for each observer are
shown schematically in Figure 2. We used the mosaics
shown for the computations presented here.
The adaptive optics system was used to briefly present

small monochromatic spots (È0.3-minute full-width at
half-maximum retinal size, G4 ms duration) at the retinal

Figure 2. Basic data from Hofer, Singer, et al. (2005). (Top panels) Schematics of retinal mosaics used for the 5 observers. These are
subsets of the full regions characterized for each observer. For each observer, the imaging and densitometry data were insufficient to
assign a class or exact location to some cones. These parameters were filled in according to the procedure described by Hofer,
Singer, et al. (2005). In the schematics, L cones are colored red, M cones green, and S cones blue. L:M ratios of mosaics used: HS 1:3.1;
YY 1.2:1; AP 1.3:1; MD 1.6:1, BS, 14.7:1. These ratios differ slightly from those provided by Hofer, Singer, et al. because here we report
the ratios for the subregions of the mosaic used in our model rather than the ratio from the larger mosaic regions studied by Hofer, Singer,
et al. (Bottom panel) The bar plot shows the color naming data for each observer. Each bar represents performance for one observer. The
proportion of the bar depicted in each color provides the percent of the corresponding color name used by that observer, for detected
spots that were namable. From bottom to top of each bar, the possible color names are red, orange, yellow, yellow-green, green, blue-
green, blue, purple, and white. Data averaged over 500-, 550-, and 600-nm spots and correspond to the intensity of 50% seeing for each
observer. Data replotted from Hofer, Singer, et al. (2005).
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region where the mosaic had been characterized. The
location of each spot within the region varied from trial-
to-trial because of fixational eye movements, so it was not
possible to know the exact location of each flashed spot.
Spots were presented at near threshold intensities, deter-
mined individually for each observer, and observers
named the color of each seen spot. Observers chose the
color name from the set red, orange, yellow, yellow-green,
green, blue-green, blue, purple, or white. Some seen spots
were also judged unnamable by observers. This is an
interesting aspect of the data that we have not attempted
to account for. Not all observers employed all available
color names.
The bottom panel of Figure 2 shows the color naming

performance of all 5 observers averaged over 500-, 550-,
and 600-nm spots. Several features of the data are
noteworthy. First, observers required a wide range of
color names to describe their experience; all observers
employed at least 5 color names across the experimental
conditions studied. Second, all observers described a non-
trivial percentage of spots as white. Third, there was
substantial individual variation in the naming data. For
example, the percentage of spots named white was
smallest for observers with roughly equal numbers of L
and M cones and largest for observers with either L-cone-
dominated or M-cone-dominated mosaics.

Model structure
Overview

Figure 3 shows the steps in the model calculation. In the
treatment here, various numerical quantities are given
symbolic names. Table 1 provides a summary of the
notation and typical values.

Stimulus representation

On every trial of the simulation, an Npixel � Npixel image
representing a small monochromatic spot was created. The
image corresponded to Kimage � Kimage minutes of arc,
and the size of the simulated spot was that of the physical
stimulus used in the experiment (Kspot minutes in
diameter). The spot location xspot, yspot was chosen at
random within the image, subject to the requirement that
its center be at least one cone aperture diameter away
from the edge of the image. The wavelength 1spot of the
simulated spots matched those used in the experiments.
We specified spot intensities (Ispot) in arbitrary units and
linked these to the physical spot intensities used in the
experiments through a psychophysical model of spot
detection (see below).

Calculation of retinal image

The retinal image is formed when the stimulus is
blurred by the eye’s optics. We computed the retinal

image using point spread functions calculated for each
individual observer at the spot wavelength from measure-
ments of the residual optical aberration of that subject
acquired during adaptive optics correction (Hofer, Singer,
et al., 2005). The adaptive optics point spread function
was represented at the same pixel resolution as the image.
For convenience in computing cone isomerization rates,
we also incorporated blurring by the cone aperture at this
stage. We assumed a Gaussian aperture for each cone,
with a full-width at half-maximum of 61.5% of the
nominal cone diameter (Kconeaperture, in minutes of arc).

Calculation of cone responses

Measurements of cone location and cone class for each
observer, as described above, were used to sample the
retinal image (see Figure 2). We used Ispot, 1spot, and the
Smith–Pokorny (DeMarco, Pokorny, & Smith, 1992;
Smith & Pokorny, 1975) estimates of cone spectral
sensitivities, with the function for each cone normalized

Figure 3. Overview of model structure. The first step was to
simulate the presentation of small monochromatic spots. For each
presentation, we then calculated the retinal image that would be
produced by the spot and from this the array of cone responses. A
model of spot detection was implemented, so that color names
were evaluated for spots predicted as seen. The cone responses
for seen spots were used as the input to the Bayesian
reconstruction algorithm, which produced a reconstructed image
for each seen spot. The chromaticity of the reconstructed spot
was used to predict its color name.
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to have a quantal sensitivity of one at its wavelength of
maximum sensitivity, to compute the mean isomerization
rate umean of each of the Ncones cones contained within the
Kimage � Kimage minute mosaic. As noted above, inten-
sities in the simulations were specified in arbitrary units,
so we simply took the mean isomerization rates directly as
the inner product of the spot spectrum and the normalized

spectral sensitivities; coupling of intensity to the experi-
ment was achieved through the detection model.
The mean isomerization rates were used to compute

simulated isomerizations for each cone through a draw
from a Poisson distribution with its mean, umean. We refer
to the result as the cone responses. In the calculations below,
it is convenient to represent the mean cone responses as an
Ncones-dimensional column vector ymeanmosaic, and the
responses with noise added as ynoisymosaic.

Detection model

In the experiments, observers made a yes–no judgment
as to whether they saw each flash and named the color of
flashes seen (or indicated that the flash was unnamable).
Experiments were run at near threshold intensities, so we
included a model of detection in the simulations. The goal
of this model was not to provide a precise account of the
detection of small spots, which is beyond the scope of this
paper. Rather the model yoked simulated and physical
spot intensities and provided an indication of which of our
simulated flashes would be seen, so as to select flashes
whose names should be predicted. Only the appearance of
seen flashes was modeled.
For each flash, we identified the cone with the largest

response. We then summed the response of that cone and
its Nneighbors nearest neighbors in the mosaic. If this pooled
response ypooled exceeded a criterion level ycriterion, the
flash was classified as seen. This is, in essence, the pooled
detection model used by Hofer, Singer, et al. (2005).
Supplementary Figures S1 and S2 compare frequency of
seeing curves from the detection model to experimental
data. The agreement is good when the relation between
model intensity and physical intensity is scaled indepen-
dently for each observer and flash wavelength to optimize
the quality of the fit (Supplementary Figure S1). The
detection model does not capture the within observer
experimental variation in frequency of seeing curves with
flash wavelength (Supplementary Figure S2) nor between
observer variation. This is not surprising, given that the
detection model does not incorporate photoreceptor dark
noise or limitations imposed by post-receptoral process-
ing. To predict color naming performance below, we set
the relation between model intensity and physical inten-
sity separately for each observer and wavelength.

Trichromatic reconstruction

The cone responses ynoisymosaic for seen flashes were
used as input to a Bayesian algorithm that reconstructs a
trichromatic image. The output of the algorithm is an
Npixel � Npixel � 3 color image. The three image planes
represent the L-, M-, and S-cone components of an
idealized retinal image reconstructed by the algorithm.
By this, we mean the image that would have been imaged
on the retina in the absence of blur by the eye’s optics.

Symbol Meaning Value

Npixel Linear size of simulated image,
pixelsa

100–101

Kimage Size of simulated image,
minutesa

11.4–12.6

Kspot Simulated spot size, minutes 0.3
Kconeaperture Cone aperture, minutes 0.9
xspot, yspot Location of a particular simulated

spot
Ispot Simulated spot intensity
1spot Simulated spot wavelength, nmb 500, 550, 600
Ncones Number of cones in image areaa 128–216
Nneighbors Number of cone neighbors in

detection model
4

ycriterion Criterion in detection model 10
ymeanmosaic Vector of mean cone responses
ynoisymosaic Vector of noisy cone responses
ypooled Pooled cone response in

detection model
p(x) Prior over trichromatic images
p(y|x) Likelihood of cone responses,

given trichromatic image
p(x |y) Posterior over trichromatic

images, given cone responses
xestimate Vector representing

reconstructed trichromatic
image

ux Prior mean vector for trichromatic
images x

Kx Prior covariance matrix for
trichromatic images x

uspace Prior mean of spatial prior at
each location

1

Aspace
2 Prior variance of spatial prior at

each location
0.25

>space Nearest neighbor correlation of
spatial prior

0.75

Nlinmod Dimensionality used in
approximation of 1-D spatial
prior

20

uuVvV Mean of color prior in CIE uVvV
chromaticity

[0.198, 0.472]V

AuVvV
2 CIE uVvVvariance of color prior 0.09

.color Factor relating Afactor
2 and 2factor 4

Table 1. Symbols and typical values. Note: aRange provided
represents range across observers. bValues given represent
values used across experimental conditions.
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We can represent the reconstructed image by a column
vector xestimate with Npixel � Npixel � 3 entries. The first
Npixel � Npixel entries represent the L-cone plane in
rasterized order, the second Npixel � Npixel entries
represent the M-cone plane, and the last Npixel � Npixel

entries represent the S-cone plane. For purposes of this
overview, the algorithm may be thought of as a procedure
that takes observations ynoisymosaic and produces an image
estimate xestimate. The algorithm itself, which forms the
core of our model, is described in more detail below.

Mapping to color names

We used the estimated image to assign a color name to
each seen flash. First, we extracted and averaged the L-,
M-, and S-cone values from the reconstructed image in the
neighborhood of the reconstructed flash. To find this
neighborhood, we identified the location in the recon-
structed image that had the largest value of the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2 þ S2

p
. Here the symbols L, M, and S represent

the reconstructed values for each cone class at a pixel of
the reconstructed image. We then computed the center of

mass of the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2 þ S2

p
over pixels whose

value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2 þ S2

p
was at least 30% of the

maximum and that were within one spot diameter of the
location with the largest value. We took the resulting
center of mass as the center of the reconstructed spot and
took the region of the reconstructed spot as one spot
diameter around this center. We excluded from this
analysis reconstructed spots that were close to the border
of the simulated image. We then found the CIE uVvV
chromaticity corresponding to the average LMS triplet.
Following the approach of Kelly (1943; see also

Hansen, Walter, & Gegenfurtner, 2007), each region in
the chromaticity diagram was assigned a color name. The
same naming boundaries were used for all observers, and
the exact boundaries were determined by numerical search
to optimize how well the overall model accounted for the
data. Variability in color naming boundaries between
observers is typically small (Hansen et al., 2007), and in
any case allowing separate naming boundaries for each
observer would have excessively increased the number of
the free parameters in the model. The numerical search
minimized the sum of squared differences between actual
and predicted naming percentages over all observers and
wavelengths. The parameters adjusted described the
location and the size of a circle that defined the region
of chromaticity space corresponding to white and the
polar angles of linear boundaries in the chromaticity space
that radiated from the center of the white circle and that
separated the color categories red, orange, yellow, yellow-
green, green, blue-green, blue, and purple. For any choice
of naming boundaries, the predicted naming percentages
were obtained by simulating repeated flash presentations
and using the naming boundaries to determine the
predicted name of each spot form its reconstructed
chromaticity. To perform the numerical search we used

soft categorical boundaries defined by a cumulative
normal distribution function, but the reported predicted
percentages were computed after the search, using hard
category boundaries. Figure 4 shows the naming bounda-
ries obtained for the best choice of algorithm prior
parameters (see below).

Bayesian algorithm

The core of the model is the algorithm that maps cone
responses ynoisymosaic to trichromatic image estimates
xestimate. We adopted a Bayesian algorithm for trichro-
matic reconstruction (sometimes called demosaicing) that
was developed by Brainard (1994) in the context of digital
color image processing. The implementation was modified
for use with the spatially irregular sampling of the human
cone mosaic, and we describe the algorithm below.

Bayesian estimation

Bayesian estimation is based on using probabilities to
express (i) the relation between the quantity to be

Figure 4. Mapping spot chromaticities to color names. The
chromaticity diagram is divided into regions corresponding to
different color names. The central circular region corresponds to
white. The surrounding regions, divided by radial lines in the
chromaticity diagram, correspond (anti-clockwise) to red, orange,
yellow, yellow-green, green, blue-green, blue, and purple as
indicated by the colored dots shown in the figure. The naming
boundaries used were held constant across observers and
wavelengths. They were determined by numerical search to
optimize the overall agreement between predictions and data as
described in the text. The solid black line shows the spectrum
locus from 400 to 700 nm. The black circles plotted on the
spectrum locus mark the chromaticities of monochromatic lights in
50 nm increments (i.e., 400, 450, I, 700 nm).
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estimated and the observed data and (ii) a priori
constraints on the quantity to be estimated.
The first probability is called the likelihood and may be

written as p(yªx). Here x represents an idealized retinal
image as described above and y represents observed cone
responses. The likelihood tells us the probability of any
vector of cone responses y occurring, given that the image
is x.
The second probability is called the prior and may be

written as p(x). This tells us the a priori probability of any
image x occurring.
Given the likelihood and the prior, Bayes rule allows

us to express the posterior probability p(xªy) as p(xªy) =
Cp(yªx)p(x), where C is a normalizing constant. The
posterior tells us the probability of any image x given the
observed data y. It is then possible to choose an estimate
of xestimate of x from the posterior, for example as the
mean or maximum of the posterior. Figure 5 illustrates

Bayesian estimation for a very simple example image
reconstruction problem.
The substance of a Bayesian algorithm is captured by

the formulation of the likelihood, the prior, and the rule
used to choose xestimate from the posterior.

Likelihood

For our application, the likelihood is essentially a model
of the image formation process. Above we described how
we simulated cone responses produced by monochromatic
flashes. Let f(1spot, Ispot, xspot, yspot, Kspot) be the function
that returns ymeanmosaic as a function of the simulated spot
properties. The function f() simulates the eye’s optics,
blurring by photoreceptor sampling, sampling by the
trichromatic mosaic, and absorption of light by the L-,
M-, and S-cone photopigments. To specify f() for the
algorithm, we used estimates of the eye’s optics under

Figure 5. Bayesian estimation applied to simple example image reconstruction. The figure illustrates the basic principles of Bayesian
estimation for a highly simplified version of the trichromatic reconstruction problem. The image to be reconstructed consists of x = [L M]T,
the L and M cone responses at a single image location. The observations are the noisy response of a single L cone at that location, y =
[L] + n, where n represents additive noise. The top left panel shows a prior distribution p(x) over the (L, M) image space. This is modeled
as a bivariate normal distribution that expresses a correlation between L- and M-cone responses. Such correlations are typical of natural
images (Burton & Moorehead, 1987; Ruderman et al., 1998). The top right panel illustrates the likelihood p(yªx) for the case y = 3. The
likelihood of observing 3 is relatively large for values of x whose first component is near 3, independent of the second component. Thus, in
this case the likelihood plots as a ridge in the (L, M) space. The posterior is obtained by multiplying the likelihood with the prior and then
normalizing. The bottom panel shows the posterior for the case y = 3. The combination of likelihood and prior constrain the solution more
than either factor alone. Here the mean and maximum of the posterior coincide and provide a reasonable estimate of x. Functions shown
in the figure plot probabilities in arbitrary units.
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normal viewing, measurements of the location and classes
of the cones in a patch of each observer’s retina (measured
as described above), and the Smith–Pokorny estimates of
cone spectral sensitivities. When viewed as a function that
maps images x to mean observations ymeanmosaic, this f() is
linear in x.
We incorporated normal optics into the algorithm’s

construction rather than adaptive optics on the assumption
that the processing applied by the visual system is not so
plastic as to adapt significantly to the adaptive optics
correction applied during the experiment.
For observers YY, AP, and MD, estimates of the

normal optics for each cone class were obtained from
wave-front sensor measurements of the eye’s optics prior
to adaptive optics correction. Aberrations were measured
at 820 nm over a 6.8-mm pupil and represented by 10
orders of Zernike coefficients. These were then used to
compute the optical point spread function for mono-
chromatic lights across the visible spectrum for a 3-mm
pupil using standard estimates of the eye’s lateral
chromatic aberration. For each cone class, the mono-
chromatic point spread functions were weighted by that
class’s spectral sensitivity and averaged. Measurements
were not available for observers HS and BS. For these
observers, we used the circularly symmetric average of
the point spread functions obtained for YY, AP, and
MD.
To convert the deterministic imaging model expressed

by f() into a likelihood, we assumed that the actual cone
responses were obtained from the mean cone responses
through the addition of zero-mean normally distributed
noise. That is, we write ynoisymosaic = N(ymeanmosaic, Knoise),
where Knoise is an Ncones � Ncones diagonal matrix with
each entry equal to the variance of the noise for the
corresponding cone in the mosaic. The variance of the
noise for each cone was taken as the mean response of that
cone to the prior mean image, which may be thought of as
implementing a normal approximation to Poisson photon
noise. The reason for using the normal approximation is
that it allows for a closed-form solution for the Bayesian
estimate.

Prior

We took p(x) as a multivariate normal distribution, so
that p(x) È N(ux, Kx). Typically, we computed with
Npixel = È100, which means that the dimensionality of x
was È30,000. This was too large to allow an arbitrary
choice of Kx, so that it was necessary to impose some
additional structure on the form of the prior.
First, we assumed that the prior was separable in

space and color. This assumption meant that the
probability distribution over L-, M-, and S-cone isome-
rization rates at each pixel did not depend on the pixel’s
location, and that the probability distribution over spatial
structure in each L-, M-, and S-cone plane was the

same. The separability assumption allowed us to write
ux = uLMS ` uspace and Kx = KLMS ` Kspace, where `
represents the Kronecker product. Measurements of
natural images indicate that separability is a reasonable
but not perfect approximation (Burton & Moorehead,
1987; Párraga, Brelstaff, Troscianko, & Moorehead, 1998;
Ruderman, Cronin, & Chiao, 1998; deviations from
separability for some image types reported in Párraga,
Troscianko, & Tolhurst, 2002).
We further assumed that the spatial component of the

prior was separable in the vertical and horizontal spatial
dimensions and that the vertical and horizontal priors were
identical to each other. Thus, uspace = uspace_1 ` uspace_1
and Kspace = Kspace_1 ` Kspace_1, where uspace_1 and
Kspace_1 characterize the properties of the vertical/hori-
zontal priors. We took uspace_1 to be a constant vector with
value uspace, so that the expected value of the prior was
constant across image locations. We computed Kspace_1

in two steps. First, we chose a single variance Aspace
2 and

nearest neighbor correlation >space and from these gen-
erated the covariance matrix of a first-order Markov
process along one spatial dimension. The parameter >space
was expressed in terms of the correlation between
locations separated by the mean cone spacing in the
mosaic. Measurements of natural images indicate that they
are characterized by a significant nearest neighbor
correlation (e.g., Burton & Moorehead, 1987; Field,
1987; Párraga et al., 1998, 2002; Pratt, 1978; Ruderman
et al., 1998).1 Denote by xspace_1 a random draw from the
normal distribution with mean vector uspace_1 and cova-
riance matrix Kspace_1: p(xspace_1) È N(uspace_1, Kspace_1).
In the absence of computational limitations, this is the
vertical/horizontal prior we would have used. In practice,
however, we needed to reduce the dimensionality of the
quantities used in the calculations still further, so that
as a second step we approximated this desired spatial
prior. We used the singular value decomposition to
express Kspace_1 = UDVV and took the linear model
Bspace_1 to be the first Nlinmod columns of U. We then
constructed a mean vector uespace_1 as the vector of weights
that provided the best least-squares approximation to
uspace_1 , Bspace_1 uespace_1, and we constructed a diagonal
covariance matrix Ke space_1 whose diagonal elements were
the first Nlinmod singular values of Kspace_1 (that is, the first
Nlinmod diagonal entries of D). We then approximated
p(xspace_1) by

pðxspace
�
1Þ ¼

pðwspace
�
1Þ; for xspace�1 ¼ Bspace

�
1wspace

�
1

0; otherwise
;

8<
:

ð1Þ

where p(wspace_1) È N(uespace_1, Ke space_1).
To specify the color component of the prior, we

assumed that the cone coordinates xcolor at each location
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were distributed according to p(xcolor) È N(ucolor, Kcolor).
We found ucolor and Kcolor by finding the mean vector and
the covariance matrix of a sample of 10000 cone
coordinate vectors that were generated as follows. First
we generated a sample of 10000 CIE uVvV chromaticity
vectors (first entry uV, second entry vV) by drawing from
bivariate normal distribution with mean uuVvVand diagonal
covariance matrix KuVvV. The matrix KuVvVwas diagonal,
and both of its entries were the same and given by
parameter AuVvV

2 . We took uuVvV to be the chromaticity of
CIE standard illuminant D65. We converted each of the
10000 chromaticity vectors to a normalized cone coor-
dinate vector, with the magnitude of these vectors chosen
so that the mean of the L- and M-cone coordinates was
unity. We then scaled each of the normalized cone
coordinate vectors by an intensity factor. The intensity
factor used for each normalized cone coordinate vector
was obtained by an independent draw from a univariate
normal distribution, p(fcolor) È N(2factor, Afactor

2 ). We set
2factor so that the mean of the L- and M-cone coordinates
of the set of 10000 scaled cone coordinate vectors was
equal to the mean L- and M-cone coordinate of the
ensemble of stimuli being simulated. For the flashed spot
simulations, we used a single value for 2factor for all
observers and wavelengths. This factor was chosen to
make the prior mean intensity equal to the mean intensity
(over observers and wavelengths) required for 50%
frequency of seeing. We set Afactor

2 = .color 2factor, where
.color was a specified constant. The resulting set of 10000
scaled cone coordinate vectors was the set used to
determine ucolor and Kcolor.
The net effect of our specification of prior p(x) is that

the properties of this prior were controlled by a relatively
small number of parameters. Although the dimensionality
of x was typically È30,000, the prior was specified by
parameters uspace, Aspace

2 , >space, Nlinmod, uuVvV, AuVvV
2 , 2factor,

and .color. We did not systematically vary uspace, Nlinmod,
uuVvV, or 2factor, so that in effect the prior was controlled by
four parameters. Permitting only a small number of
degrees of freedom for the prior is crucial to managing
the complexity of computational studies such as the one
reported here.

Posterior and estimate

Our choice of normal prior with known mean and
covariance and additive normal noise with known mean
and covariance, combined with the fact that the determin-
istic component of the likelihood function is linear,
implies that the posterior distribution is also normal
(Gelman, Carlin, Stern, & Rubin, 2004). In addition, for
this case, the mean of the posterior may be computed
analytically from the observation vector ynoisymosaic using
standard formulae (Brainard, 1994; Gelman et al., 2004;
see also Pratt, 1978, development of discrete Wiener
estimator). This posterior mean is also the value of x that

maximizes the posterior, and we take it as our estimate
xestimate.
Interestingly, the final estimate may be expressed

as an affine transformation of the cone responses:
xestimate = Iynoisymosaic + i0, where I is an (Npixel �
Npixel�3)�Ncones matrix and i0 is an (Npixel � Npixel � 3)
vector. Figure 6 provides an intuitive interpretation of the
form of this estimator.

Determining prior parameters

It is well-established that natural images exhibit high-
correlations between nearby spatial locations and that
they produce high-correlations between the responses of
different cone classes at the same spatial location. The
exact values appropriate for use in models such as the
one we present are less clear, in part because some
variation in the exact values can be used to compensate
for distortions introduced by the normal assumption
incorporated in our priors. To determine the best
parameters, we ran simulations for 108 different choices
of prior parameters, obtained as all possible combinations
of AuVvV

2 = [0.07 0.08 0.09 0.10], Aspace
2 = [0.25 0.5 1.0],

>space = [0.75 0.85 0.95], and .color = [2 4 8]. For each
combination, we simulated 2000 flashed spots at each
wavelength for each observer and extracted the chroma-
ticities of the reconstructed seen spots. We then fit the
color boundaries to maximize the agreement between
predicted and measured naming percentages. Since the
simulation involves a random component (spot locations
and added noise on each simulated trial), we were
cautious about the possibility that some of the boundary
fitting might be explaining random rather than systematic
variation. To avoid this, we resimulated the experiment
for each of the 108 prior choices and computed the
correlation between predicted and named percentages
using the corresponding boundary that was fit on the first
run. We selected the prior parameters that led to the
highest second run correlation, without refit of the naming
boundaries.
To account for regression to the mean in the quality of

the fit, we then repeated the simulate-fit-simulate proce-
dure for the best choice of parameters and report here the
boundaries obtained from the fit to the first simulation
run together with predicted naming results from the
second simulation run. The final parameters used were
AuVvV
2 = 0.09, Aspace

2 = 0.25, >space = 0.75, and .color = 4. The
computed correlations between cone classes correspon-
ding to these parameters were LM: 0.94, LS: 0.65, and MS:
0.70. Large correlations between cone classes are typical
in natural images (Burton & Moorehead, 1987; Ruderman
et al., 1998; see also Nascimento, Ferreira, & Foster,
2002; also Jaaskelainen, Parkkinen, & Toyooka, 1990;
Maloney, 1986). Figure S3 shows three draws from the
prior. The images appear as blurry desaturated colored
noise, consistent with the fact that prior incorporates

Journal of Vision (2008) 8(5):15, 1–23 Brainard, Williams, & Hofer 9

http://www.journalofvision.org/lookup/suppl/doi:10.1167/8.5.15/-/DCSupplementaries/8.5.15_supplement.html


spatial correlations and correlations across cone classes,
but not any model of the higher-order spatial structure that
occurs in natural images (Simoncelli, 2005).

Results

Intuition: Algorithm performance for example
mosaics

Figure 7 shows the results of the Bayesian reconstruc-
tion algorithm for two simple cases. The first is shown in
the left two panels. The top left panel depicts a mosaic
consisting only of L cones, while the bottom left panel
shows the output of the algorithm when the single L cone
at the center of the mosaic is stimulated in isolation. We

can see the when a single cone is stimulated, the algorithm
reconstructs a small spot located in the vicinity of that
cone. In addition, we note that the color appearance of the
reconstructed spot is whitish, with a tinge of blue. The
intuition behind this result is that when the mosaic
contains only L cones, its responses provide no informa-
tion about the relative spectrum of the stimulus. Thus, the
prior term dominates the chromatic aspect of the recon-
structed stimulus, and the mean of the prior has the
chromaticity of CIE daylight D65.
The right two panels show the reconstruction for a

second mosaic. This mosaic differs from the first only in
that the central L cone is surrounded by an island of M
cones. We ran the algorithm for the same response
scenario, where only the central L cone was stimulated,
and indeed kept the response of the central L cone the
same across the two simulations. Here the reconstruction
is also a small spot, but its color appearance is reddish.
This change in the relative spectrum of the reconstructed

Figure 6. Intuitive interpretation of Bayesian reconstruction estimator. The form of the Bayesian reconstruction estimator is
xestimate = Iynoisymosaic + i0. The upper left panel of the figure depicts this equation as a matrix tableau, but without the additive term i0. The
reconstructed image xestimate is represented by a vector. This vector is constrained to be a weighted sum of the columns of the matrix I. In
the tableau, these columns are denoted as I1 through IN, where N = Ncones. Each of the columns of I may be thought of as a basis image,
and the reconstructed image is always a weighted sum of these basis images. The weights are obtained from the entries of the vector
ynoisymosaic, which are denoted as y1 through yN in the tableau. The bottom of the figure depicts the action of the matrix tableau in terms of
images. A reconstructed image is shown on the left. This image is obtained by scaling and summing the basis images. Two basis images,
labeled I1 and IN, are shown. These images correspond to the cones labeled 1 and N on the mosaic shown on the upper right of the
figure. Each basis image is a spot localized in the region of the corresponding cone. Thus, an intuitive interpretation of the action of the
Bayesian algorithm is that it reconstructs images as the weighted sum of blurry spots, with the exact shape and color of the spot tailored to
the corresponding cone in the mosaic. A stronger cone response leads to more of that cone’s basis image in the reconstructed image.
Below (Figures 7 and 8) we provide intuition about why the color of the basis image corresponding to a particular cone depends not only
on its class (L, M, or S) but also on the cones around it. The effect of the additive term i0 (not shown) may be understood as adding one
more fixed image into the estimate. The reconstructed image shown is of a 12-cpd sinusoidal luminance grating, and the cone responses
used in the reconstruction were obtained using the mosaic shown in the figure. The red green splotches in the estimate are a more subtle
form of the sort of aliasing artifact illustrated in Figure 1. Mosaic used in the simulation is that of observer AP, and the parameters used by
the Bayesian algorithm are as described below for the small spot model. Bayesian reconstruction applied to sinusoidal gratings is treated
in more detail in the results section of this paper.
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spot occurs despite the fact that in both cases the
stimulation of the central L cone was identical, and
the responses of all the other cones were set to zero. The
reason for the change is that the prior incorporates
correlations across space, so that information about the
stimulus at the central location is carried not just by the
cone located there but also by the surrounding cones.
Intuitively, the fact that the M cones surrounding the
central L cone have zero responses indicates that, had
there been an M cone at the location of the central L cone,
the M cone would also have had a small response. This
together with the fact that the central L cone itself has a

large response leads to a reconstructed stimulus with more
power at long wavelengths than middle wavelengths.
This example illustrates the structural feature of our

model that provides the potential to account for the
appearance of the small spots flashed in the experiment
of Hofer, Singer, et al. (2005), namely that the appearance
of a perceived spot resulting from stimulation of a single
cone of particular class (e.g., an L cone) depends strongly
on the properties of the mosaic surrounding that cone.
Figure 8 provides an additional example. This figure

shows the reconstructed spots obtained for twomosaics when
only the central M cone is stimulated. On the left is a mosaic
where the central M cone is surrounded by a mix of M and L
cones. For this mosaic, the reconstructed spot indeed appears
to lie on the blue end of the blue-green range. The intuition
here is that the absence of an S cone in the neighborhood of
the flash means that the visual system has no direct
information about the short wavelength component of the
stimulus. Thus, the algorithm fills this in from the prior
distribution. In that distribution, M and S signals are
correlated, and a large M cone component is thus most likely
to be accompanied by a large S cone component. Hence, the

Figure 7. Reconstruction algorithm performance for two artificial
mosaics. The top two panels show two hypothetical mosaics. The
left mosaic contains only L cones. The spatial arrangement of the
cones in the second mosaic is the same, but here the central L
cone has been surrounded by an island of M cones. We used the
Bayesian algorithm to reconstruct the stimulus from the
responses of these two mosaics, for the case where the only
the central L cone (marked by the white square in each panel) had
a non-zero response. That response represented a near threshold
intensity level and was the same for both reconstructions. The
reconstructed images are shown below each mosaic. Displayed
reconstructions were obtained by mapping LMS planes to the
standard sRGB color space (without gamma correction). To
suppress ringing away from the central spot and make the color
appearance at the center of the reconstructed spot easier to
visualize, the reconstructed images shown were windowed at
each pixel by the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2 þ S2

p
and values less than 0

were set to 0. If we had not done this, the images would have had
spatial structure similar to the basis images shown in Figure 6.
Each displayed image was normalized by a single scale factor so
that it occupied the full intensity range of the sRGB color space.

Figure 8. Effect of nearby S cones on appearance of spots seen
by M cones. The top two panels show two hypothetical mosaics.
Each has a central M cone (indicated by a white square)
surrounded by a mix of L and M cones. The mosaic on the right
is identical to that on the left, with the exception that one of the L
cones has been replaced by an S cone. The bottom two panels
show the reconstructed spots that result from identical stimulation
of the central M cone. The effect of adding the S cone to the
mosaic is to shift the appearance of the reconstructed spot from
blue to green. Image display of reconstructed images was
handled as described in the caption for Figure 7.
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blue appearance of the reconstructed spot. The presence of
nearby L cones, together with the spatial correlations
incorporated in the prior, biases the reconstruction away
from having a substantial long wavelength component.
The mosaic on the right is identical to the one on the left,

with the exception that one of the L cones neighboring the
central M cone has been replaced by an S cone. Here the
reconstruction is considerably greener. This occurs because
the S cone, which has a zero response, together with the
spatial correlations in the prior, provides evidence that the
short wavelength component of the stimulus is small.

Accounting for the experimental data

We simulated the small-spot experiment and found the
chromaticities of the spots reconstructed by the model.

The reconstructed chromaticities for two observers are
shown in Figure 9. For each observer, there is a
considerable spread in the reconstructed chromaticities.
This spread results from the combination of two separate
effects incorporated into the model. First, there is added
response noise on each trial. Second, the location of the
spot varies from trial-to-trial.
There is also between observer variation in the

reconstructed chromaticities. For example, fewer recon-
structed spots are in the blue and green regions of the
chromaticity diagram for BS than for AP, while more are
in the red region. This between observer difference in the
model predictions occurs because each observer has an
individual mosaic, with different relative numbers of L,
M, and S cones. The change in mosaic means that the
class of cone (or cones) mediating detection will vary, so

Figure 9. Chromaticities of reconstructed small spots for two observers. Each panel shows the reconstructed chromaticities for 0.3-arcmin
spots for one observer, for 550 nm flashes. Left panel: observer AP (LM ratio 1.3:1). Right panel: observer BS (LM ratio 14.7:1). Color
boundaries as in Figure 4.

Figure 10. Prediction of white naming. Left panel. Solid circles connected by dark solid lines show the percentage of spots named white
against an asymmetry index. The asymmetry index takes on a value of 0 for a mosaic where 50% of the L and M cones are L cones, and
a value of 50 for a mosaic where all of the L and M cones are L cones or where all of the L and M cones are M cones. Open circles
connected by light dashed lines show the model’s predictions in the same format. Blue: 500-nm spots; green: 550-nm spots; red; 600-nm
spots. The inset provides the root mean square error (RMSE) between predictions and data (in percent) as well as the correlation
between predictions and data. Right panel. Same predictions and data as in left panel, but averaged over flash wavelength.
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Figure 11. Prediction of color naming data. Each bar plot shows the percent names for all 5 observers and one wavelength. Left column
shows data, while right column shows predictions. Each plot is in the same format as the bottom panel of Figure 2. For plots from top to
bottom, wavelengths are 500, 550, and 600 nm, respectively. Within each plot, observers are ordered from left to right HS, YY, AP, MD,
and BS.
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that an observer with an M-rich mosaic will detect a larger
fraction of flashes with M cones than an observer with an
L-rich retina. In addition, for spots detected by the same
class of cone, the average structure of the local neighbor-
hood surrounding the detecting cone (or cones) will vary
across observers. Because the model’s predictions are
sensitive to the structure of the mosaic surrounding the
cone(s) stimulated by the flashed spot, this will also
produce individual variation in the chromaticities of the
reconstructed spots.
The variation in reconstructed chromaticities may be

converted to variation in predicted color naming. Figure 10
shows the performance of the model for the white naming
data. The solid circles connected by Dark solid lines show
the percentage of spots named white against the asymme-
try index introduced by Hofer, Singer, et al. (2005). For
all three spot wavelengths, the percentage of flashes
named white increases with the asymmetry index. The
open circles connected by Light dashed lines show the
model’s predictions in the same format. The model
captures the increase in percent white with increasing
asymmetry index and also the general trend of dependence
of percent white on spot wavelength. Note that no free
parameters in the model were adjusted specifically to
describe wavelength or individual observer differences.
Figures 11 and 12 summarize the prediction perfor-

mance of the model for the full set of color names
(including white). The model predicts the broad features

of the data, both across observers and across flash
wavelength. The root mean square error (RMSE)
between model predictions and observed data was
8.3%, and the correlation between predictions and data
was 0.83. There are also variation across observers in the
percentage of non-white color names used that is not
matched by the model’s predictions. It would be some-
what surprising if the model described all of the variation
in the data, as the model is based on a number of
approximations. These include a simple model of flash
detection, use of normal image priors and normal
likelihood in the Bayesian algorithm, the fact that the
model does not incorporate post-receptoral noise or other
biological constraints past the receptors, the possibility of
individual variation in the spectral sensitivity of the L
and M cones, and the simple form of the color
boundaries used in the naming model.

Discussion

Unpacking the model’s behavior

To help understand what features of the model drive its
behavior, we re-modeled the data with a number of model
variants. The results of this effort are summarized here
and presented and described in more detail in Supple-
mentary Figures S4–S13. Figure S4 replots Figures 6, 10
(right panel), 11, and 12 as a compact montage for
reference. Figures S5–S11 provide the same plots for
model variants. Figure S12 shows chromaticities of
reconstructed flashes when the color or spatial correlations
were set to zero in the prior. Figure S13 shows the RMSE
error obtained for each model variant.
The conclusions we drew from this exercise are as

follows: Run-to-run variability in the overall quality of fit
is small (Figure S5), as are the effects of receptor noise in
the simulation (Figure S7). In addition, shuffling the
locations of the L and M cones in each observer’s mosaic
has little effect on the model’s performance, as long as the
Bayesian model is constructed with the same mosaic used
in the simulations (Figure S6). On the other hand,
randomizing the identities of the L and M cones for
each observer so that all observer’s mosaics have a
common L:M ratio destroys the model’s ability to
account for the individual variation in percentage of
stimuli named white (Figure S8). Removing individual
differences in the optics also reduces the quality of the
model fit as measured by overall RMSE, but in this case
the pattern of the predictions remains qualitatively con-
sistent with the data (Figure S9). Figures S10–S12 show
that incorporating some degree of color and spatial
correlation into the priors is crucial to the model’s ability
to account for the data.

Figure 12. Summary of prediction of color names. Each plotted
point shows predicted percent named against measured percent
named. Data for all 5 observers and all color names (including
white). Blue points: 500-nm spots; green points: 550-nm spots;
red points; 600-nm spots.
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Model behavior for other stimuli

The model does a reasonable job of predicting the
appearance of small-spot colors. More generally, the
Bayesian algorithm can reconstruct an image from any
set of cone responses, and we thought it important to
explore the behavior of this algorithm for stimuli closer to
everyday experience than small monochromatic spots
viewed under adaptive optics conditions. We investigated
the model’s behavior for larger monochromatic spots at
suprathreshold intensities and for sinusoidal modulations
along three color directions.

Larger suprathreshold spots

Figure 13 shows the reconstructed chromaticities of
550-nm suprathreshold 8-arcmin spots. Three features of
the reconstructions are apparent when compared with the
corresponding reconstructions for small spots (compare
with Figure 9): The variability is greatly reduced within
observer, the variability is greatly reduced between
observers, and the reconstructed chromaticities are
much closer to that of the 550-nm stimulus. These
same features hold for the other observers and wave-
lengths, as illustrated by the naming histograms shown
in Figure 14. The naming is consistent across observers.
The names for the 500- and 550-nm spots correspond to
what we expect from standard accounts of the appearance
of monochromatic lights (e.g., Hunt, 1987, p. 130). Spots
of 600 nm are generally named orange rather than the
predicted yellow. As we note in the caption for Supple-
mentary Figure S5, the data do not sharply constrain the
naming boundary that separates yellow from orange. This
is the probably cause of the misprediction for the 600-nm
spots.

Suprathreshold gratings

Sinusoidal modulations have been employed exten-
sively as stimuli to probe visual processing of spatial
and chromatic information (e.g., Campbell & Robson,
1968; de Lange, 1958; Mullen, 1985; Sekiguchi, Williams,
& Brainard, 1993). We applied the Bayesian reconstruc-
tion algorithm to such gratings. We simulated iso-
chromatic gratings, red/green isoluminant gratings that
modulated the L and M cones in counterphase, and
gratings that isolated the S cones. Our interest was to
verify that the model produced reasonable output for these
spatially extended stimuli. Since the model is designed to
account for appearance and not thresholds, we ran our
simulations at fixed contrasts for each color direction.
Figure 15 shows simulated and reconstructed gratings
corresponding to 6 cycles per degree (cpd). At this spatial
frequency, the isochromatic and red/green gratings are
reconstructed veridically. There is a small amount of
distortion visible in the S-cone grating reconstruction that
arises because of aliasing by the sparse S-cone submosaic
(also see below). The reconstructions at lower spatial
frequencies, including 0 cpd, appear similarly veridical.
Thus, the Bayesian model is consistent with the fact that
we see the world with little distortion at low-spatial
frequencies.
The left column of Figure 16 shows simulated and

reconstructed isochromatic gratings corresponding to
24 cpd. Here distortions are visible in the reconstructions.
Although the stimulus grating is visible, it is contaminated
by red/green noise. This corresponds to the phenomenon
of Brewster’s colors, where red/green mottle is apparent
against high-contrast high-spatial frequency luminance
gratings. We have argued previously that Brewster’s
colors arise as a result of trichromatic sampling by the
retinal mosaic (Williams et al., 1991). In that report, a

Figure 13. Reconstructed chromaticities for 8-arcmin spots. The figure shows the reconstructed chromaticities for flashed 8-arcmin 550-nm
suprathreshold monochromatic spots, for two observers. Color naming boundaries shown are those derived from the simulations of the
small spot experiments (see Figure 4 above). Simulations were performed as for the small spots, using the adaptive optics point spread
functions to compute the retinal images. Left panel: observer AP (LM ratio 1.3:1). Right panel: observer BS (LM ratio 14.7:1).
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simple model of the reconstruction process accounted for
the spatial pattern of the red/green mottle but predicted
that it should be much more visually salient than it is. That
model was based on independent interpolation of the
signals from the L-, M-, and S-cone submosaics. The

Figure 15. Reconstructed low-spatial frequency sinusoidal gra-
tings. The top row shows patches of isochromatic, red/green
isoluminant, and S-cone grating modulations that correspond to a
spatial frequency of 6 cpd. The middle and bottom rows show, for
two observers, the reconstructed stimuli obtained by applying the
Bayesian algorithm to the cone responses from these gratings.
Simulated grating LMS contrasts were [0.75 0.75 0.75], [0.062,
j0.12, 0.00], and [0, 0, 0.66] for the three modulation directions,
respectively. These contrasts fit within the gamut of a typical CRT
monitor. Mean stimulus chromaticity was that of CIE illuminant
D65 (the prior mean), and the mean stimulus intensity was
chosen to be È1.5 log units above the small-spot 50%-seeing
threshold intensity. Simulations were performed using the
mosaics of observer AP (middle row) and BS (bottom row), and
the retinal images were computed using normal optical PSFs
(without adaptive optics correction). Images rendered in the sRGB
color space (without gamma correction), scaled to a common
maximum and with negative image values truncated to zero.

Figure 14. Predicted naming for 8-arcmin spots. Each bar plot
shows the percent names for all 5 observers and one wavelength
for flashed 8-arcmin monochromatic spots. Each plot is in the
same format as the bottom panel of Figure 2. Naming boundaries
used to compute color names were those derived from the small
(0.3 arcmin) spot simulations. Simulation details as described in
the caption of Figure 13 above. Plots from top to bottom,
wavelengths are 500, 550, and 600 nm, respectively. Within each
plot, observers are ordered from left to right HS, YY, AP, MD,
and BS.
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Bayesian reconstruction algorithm, which jointly pro-
cesses the responses of the entire mosaic, predicts more
subtle effects that are in line with the perceptual
phenomenon.
The center column of Figure 16 shows simulated and

reconstructed red/green gratings at 24 cpd. The recon-
struction distorts the spatial structure of the stimulus
grating. Although red/green gratings are typically below
detection threshold at 24 cpd when viewed with normal
optics (Mullen, 1985), they can be detected when
presented using interferometric techniques that bypass
optical blurring (Sekiguchi et al., 1993). In this case, the
percept at detection threshold is one of spatial noise
(Sekiguchi et al., 1993), perhaps consistent with the
Bayesian algorithm’s reconstruction.
The right column of Figure 16 shows simulated and

reconstructed S-cone gratings at 15 cpd. As the spatial
frequency of S-cone gratings increases, distortions
referred to as S-cone aliasing occur because of the sparse
sampling of the S-cone submosaic (Williams & Collier,
1983). The splotchy nature of the reconstructed patterns
reproduce this phenomenon.
Figure 17 summarizes the relation between simulated

and reconstructed stimuli for modulations between 0 and
60 cpd for all three color directions investigated. For each
stimulus, we computed the projection of the reconstructed
image onto the stimulus image, after subtraction of the

mean image. We then took the ratio of the contrast power
of the stimulus and projected images. This provides a
single number measure of how much of the input image
makes it through the reconstruction process. We plotted
this measure, which we refer to as the projection contrast
sensitivity, against spatial frequency for all three color
directions. Each function was normalized by its value for
0 cpd.
For observer AP (top panel), the plot falls off most

rapidly for the S-cone gratings. This effect is due to axial
chromatic aberration, which reduces the optical quality for
stimuli seen by S cones relative to those seen by M and L

Figure 16. Reconstructed high-spatial frequency sinusoidal gra-
tings. The top row shows patches of isochromatic, red/green
isoluminant, and S-cone grating modulations that correspond to a
spatial frequencies of 24, 24, and 15 cpd, respectively. The middle
and bottom rows show the reconstructed stimuli obtained by
applying the Bayesian algorithm to the cone responses from
these gratings, for two observers. Other details as with Figure 15
above.

Figure 17. Projection contrast sensitivity. The plot shows the
projection contrast sensitivity (see description in text) for two
observers as a function of grating spatial frequency for isochro-
matic (black), red/green isoluminant (red), and S-cone isolating
gratings (blue). Values shown are the average of values obtained
for gratings in sine and cosine spatial phase. Top panel, observer
AP; bottom panel, observer BS.
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cones, and the sparse sampling provided by the S cone
submosaic. More interesting is the fact that the red/green
function falls off more rapidly than the isochromatic
function. This effect is a fundamental consequence of the
fact that L and M cone signals are highly correlated in
prior distribution used by the Bayesian algorithm. At any
spatial frequency, a luminance grating is more likely a
priori than a red/green grating. In addition, the high
correlation between neighboring pixels in the prior makes
low spatial frequency stimuli more likely a priori than
high spatial frequency stimuli. As the spatial frequency of
the stimulus gratings increases, the reconstructed power
falls off in part because of optical blurring. But this
blurring affects isochromatic and red/green isoluminant
gratings to about the same degree. The differential effect
seen in the top panel of the figure occurs because the
prior, which favors low frequency interpretations in the
face of ambiguity introduced by trichromatic sampling,
begins to dominate earlier for red/green gratings than for
isochromatic gratings. For observer BS (bottom panel),
who has very few M cones, the spatial falloff for red-green
gratings is comparable to that of the S-cone isolating
gratings. The difference in predicted performance for the
two observers suggests that carefully tailored experiments
with gratings might be able to reveal individual differ-
ences in L:M cone ratio.

Quality of model fit

It is worth emphasizing that the model does not provide
a perfect account of the experimental data. It would
almost certainly be possible to improve the model fit by
adding more parameters. For example, we could have
parameterized the chromaticity region corresponding to
white with an ellipse rather than a circle, allowed the
boundaries between chromatic color names to curve
instead of being straight lines (Abney effect), allowed
the boundaries to depend on the luminance of the
reconstructed spots (Bezold-Brüke hue shift), or modeled
some degree of individual differences in color naming
boundaries. We could also have accounted for individual
differences in spectral sensitivity of L and M cones (see
for example the analysis of ERG data in Brainard et al.,
2000), explored a wider range of detection models to try
to find one that improved the fit to the naming data, or
attempted to model effects of post-isomerization noise.
We did not think that any of the above data-fitting

exercises would yield much additional insight. Indeed we
see the degree of agreement between model and data as
quite encouraging, given the relative simplicity of the
approach. As the experimental procedures for conducting
psychophysics under adaptive optics conditions are
refined, it should be possible to determine more precisely
the degree to which incorporating additional factors is
required. For example, our current analysis does not rule

out the possibility that some aspects of color naming
boundaries vary systematically with L:M cone ratio, but a
data set that intermixed naming of small and large spots
would provide a direct test of this possibility.

Predictions

The model in its current form highlights the fundamen-
tal consequences of interleaved trichromatic sampling for
visual performance. In this regard, a promising future
direction is to use the model to motivate experiments that
more sharply test its predictions. These concern primarily
the way that color naming of small spots should vary
within observer, as a function of the mosaic surrounding a
single stimulated cone. Here we outline two such
predictions. First, how should the fraction of white
responses to small monochromatic spots vary, within
observer, with the structure of the mosaic in the
neighborhood of the test flash. Second, how should the
percentage of blue and green responses for flashes
detected by M cones vary, again within observer, as a
function of the distance to the nearest S cone. Although
testing these predictions requires refinement of the
experimental procedures to allow recording of the retinal
location of the flashed spots on a trial-by-trial basis, we
expect that this will soon be feasible. Such experiments
may also clarify the conditions that lead to spots that are
seen but that are nonetheless described as unnamable by
observers and allow us to understand whether this
phenomenon depends systematically on properties of the
mosaic.

Effect of local mosaic properties one percent named
white

Since in our simulations we know the location of every
simulated flash, we binned the data over flashes that
landed in similar local neighborhoods and computed the
percentage of flashes named white as a function of the
neighborhood properties. Figure 18 shows the results of
this calculation. The x-axis shows the number of L cones
among the 10 cones nearest to the location of the flashed
spot; the y-axis shows the corresponding predicted
percentage of flashes named white. Each individual line
in the plot was derived from the data for a different
observer and spot wavelength. The individual lines do not
span the entire x-axis because there were not enough
flashes in every bin to compute a meaningful prediction;
we only plotted data for bins that contained more than 10
seen flashes (from simulations of 2000 flashes).
The overall form of the predictions is clear. The number

of flashes named white depends strongly on the number of
L cones in the local neighborhood and is highest for
asymmetric local neighborhoods (i.e., those with mostly L
or mostly M cones). The percentage of flashes named white
is not highly sensitive to between observer differences or to
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flash wavelengths, beyond the fact that it may be difficult
for some observers and wavelengths to aggregate sufficient
data to trace out the entire function.

M cones and blue

In classical color theory, signals from M cones contrib-
ute to the sensation of green through a red/green opponent
pathway and to the sensation of yellow through a blue/
yellow opponent pathway (Hurvich, 1981; Kaiser &
Boynton, 1996). There have, however, been suggestions
that under some conditions signals from M cones can
contribute to the sensation of blue, particularly for small
spots (DeValois & DeValois, 1993; Drum, 1989; Schirillo
& Reeves, 2001, suggestion attributed to B. Drum by the
authors; Hofer, Singer, et al., 2005, suggestion attributed
to D. MacLeod by the authors). Here we examine the
predictions of the Bayesian model in this regard for the
color appearance of small flashes.
Figure 8 above shows that the color of a spot

reconstructed from stimulation of an M cone can depend
on whether there is an S cone nearby. Figure 19
summarizes this effect for the overall set of simulations
that we performed. Seen flashes such that the nearest two
cones to the flash location were M cones were selected
from all flashes used in the main simulation (5 observers,
3 wavelengths). For each flash, if there was an S cone
within the 100 cones nearest to the flash location, the
distance to the nearest S cone was computed. Flashes were
grouped according to this distance in 1-arcmin bins. For

each bin, the percent of all flashes named blue and the
percent of all flashes named green were then computed.
The plot shows that green responses are more prevalent
when an S cone is nearby the flash location and decrease
as the distance to the nearest S cone increases, while the
opposite relation holds for blue responses. Thus, consis-
tent with some of the earlier suggestions cited above, the
Bayesian algorithm predicts that whether an M cone
contributes to blueness or greenness varies and depends
on whether or not there is an S cone nearby.

Improving the Bayesian algorithm

The present algorithm is based on normal priors and
additive normal noise. This choice was based on consid-
erations of analytic and computational convenience. More
realistic priors would incorporate a positivity constraint on
the reconstructed image and non-normal features of
natural images (Simoncelli, 2005). As suggested to us by
L. Paninski, it may also be feasible to implement a Poisson
rather than additive normal noise model. It will be
interesting to see whether and how the reconstruction
algorithm’s behavior varies as these more realistic assump-
tions are added. Our belief is that the basic structural

Figure 18. Predicted dependence of percent named white on local
mosaic. The figure shows the predicted percentage of spots
named white as a function of the local mosaic in the vicinity of the
spots. The x-axis is the number of L cones among the 10 cones
nearest to the retinal location of the simulated flashed spot. The
y-axis is the corresponding percentage of spots named white.
Each individual line in the plot shows data derived from
simulations of one wavelength and observer. Blue: 500-nm spots;
green: 550-nm spots; red; 600-nm spots.

Figure 19. Effect of nearby S cones on appearance of spots seen
by M cones. Flashes such that the nearest two cones to the flash
location were M cones were selected from all flashes used in the
main simulation (5 observers, 3 wavelengths). For each flash, if
there was an S cone within the 100 cones nearest to the flash
location, the distance to the nearest S cone was computed.
Flashes were grouped according to this distance in 1-arcmin bins.
For each bin, the percent of all flashes named blue and the
percent of all flashes named green were then computed. The plot
shows the results (blue line, percent named blue; green line,
percent named green). Data from a bin were plotted if the bin
represented at least 10 flashes.
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features of the reconstructions will remain unaltered and
that the changes will be reflected in reasonably subtle
features of the performance and predictions.

Relation to other work on optimal color
processing

A number of authors have considered optimal visual
processing of color information. This approach has been
effective in accounting for spectral properties of cone
photoreceptors (e.g., Regan et al., 2001), the approximate
receptive field structure of retinal ganglion cells and
cortical units (e.g., Atick, Li, & Redlich, 1992;
Buchsbaum & Gottschalk, 1983; Caywood, Willmore, &
Tolhurst, 2004; Derrico & Buchsbaum, 1990; Doi, Inui,
Lee, Wachtler, & Sejnowski, 2003; Lee, Wachtler, &
Sejnowski, 2002; Párraga et al., 1998, 2002; Ruderman
et al., 1998; van Hateren, 1993; Wachtler, Doi, Lee, &
Sejnowski, 2007), the division of information between ON
and OFF pathways (von der Twer & MacLeod, 2001; see
also Ratliff, 2007), and the shape of ganglion cells’ static
non-linearities (von der Twer & MacLeod, 2001). In this
paper, we add color appearance phenomena to the
exemplars that may be understood as a consequence of
optimal processing. Common to our work and the earlier
work is the central role played by the statistical structure
of natural images. Our work differs from the earlier work
in two important ways. First, of the above papers, only a
few (Doi et al., 2003; Wachtler et al., 2007) explicitly
consider the trichromatic sampling of the cone mosaic,
while this is a key feature of our model. Second, rather
than optimizing signal-to-noise (or information trans-
mitted), our work emphasizes veridicality of the final
perceptual representation.
Interestingly, our model produces a possible functional

motivation for the well-known difference between the
high-spatial frequency falloff of the isochromatic and
chromatic spatial contrast sensitivity functions (Mullen,
1985; Sekiguchi et al., 1993), in that similar behavior is
shown by the projection contrast sensitivity functions
plotted in Figure 17. In our model, this behavior arises
from the properties of the prior distribution and their
interaction with information loss from trichromatic sam-
pling when visual processing optimizes veridical repre-
sentation. To connect our model more fully with threshold
data would require elaborations that specify the sources of
post-receptoral noise that limit detection and how these
interact with trichromatic reconstruction. Such elabora-
tions might also enable principled integration of our
model and earlier work that relates to isochromatic and
chromatic sensitivity but that emphasizes efficiency of
information transmission (Atick et al., 1992; van Hateren,
1993). The approach taken by Abrams, Hillis, and
Brainard (2007), who considered the relation between
the adaptation required to optimize color discrimination

and that required to stabilize color appearance across
changes of illumination, could provide guidance in this
regard.

Learning cone classes

The Bayesian algorithm incorporates information about
the location and class of each cone. Although a discussion
of how the visual system might learn this information is
well beyond the scope of this paper, Figures S14 and S15
illustrate a possible error signal that could drive a learning
algorithm. The idea underlying these figures is due to
Maloney and Ahumada (1993), who showed that a visual
system could learn the locations of photoreceptors by
comparing image reconstructions across eye movements.
These should typically be shifted copies of one another
since a change in eye position will usually just shift the
retinal image and, in the absence of reconstruction error,
the reconstructed image will shift by the same amount.
This same idea appears to have potential for driving an
algorithm that learns cone classes as well. Figure S14
shows pairs of shifted reconstructions based on algorithm
that is based on correct knowledge of cone classes, while
Figure S15 shows corresponding pairs when the algorithm
is based on a partially mistyped mosaic. The errors in the
latter case have a characteristic signature that is tied to the
mosaic rather than to the input and which we speculate
could be used to allow the visual system to learn cone
classes. Whether a successful algorithm based on this or
other developmental principles (e.g., Dominguez &
Jacobs, 2003) can be shown remains an interesting future
direction.

Neural implications

The model as we have presented is functional and is
based on optimality considerations rather than on known
facts about mechanisms in the visual pathways. We noted
in the Methods section that the Bayesian reconstruction
may be expressed as xestimate = Iynoisymosaic + i0. As
emphasized by Brainard et al. (2006), in general the
neural implementation of a Bayesian calculation need not
resemble its implementation on a digital computer. Here,
however, examination of the form of the estimator allows
straightforward interpretation of the algorithm in neural
terms. If we neglect the i0 term, we see that the
reconstructed image is the weighted sum of a set of basis
images, one from each column of the matrix I, with the
weight on each column simply being the magnitude of the
response of the corresponding cone. We know from
examination of these basis images that each represents a
blurred colored blob, as in the lower panels of Figures 7
and 8. Thus, we can conceive of a set of neurons, one for
each foveal cone, each of which represents a single basis
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image. A set of second stage neurons could then pool the
output of the first to produce a representation of the
Bayesian image reconstruction.
A useful insight gained from this perspective is that the

Bayesian model can be understood as associating a
localized color percept with each individual cone (rather
than each individual cone class) and then producing an
overall percept that is the sum of the individual cone
percepts. This is similar to the elemental sensation
assumption made in earlier work that analyzed the appear-
ance of small spot colors (Hartridge, 1954; Krauskopf,
1964, 2000; Krauskopf & Srebro, 1965; Otake, Gowdy, &
Cicerone, 2000). This assumption is that a fixed sensation
(e.g., red, green, or blue) is associated with stimulation of
cones of each class (e.g., L, M, and S). The elemental
sensation assumption is difficult to reconcile with the expe-
rimental data of Hofer, Singer, et al. (2005), and the current
Bayesian model indicates that it is not compatible with
optimal reconstruction from the interleaved cone mosaic.
The possibility that the elemental sensation assumption
does not hold is worth bearing in mind when interpreting
conclusions drawn via analyses that incorporate it.
The Bayesian model does suggest a generalization of

the elemental sensation assumption, where the percept
associated with each cone depends not only on its class
but also on the fine structure of the local mosaic in which
it is situated. If this more general form of the assumption
holds, in which stimulation of any given cone always
contributes the same sensation to the overall percept, then
we should not expect variability in the color percepts
resulting from trials that resulted in the identical array of
cone responses. In practice, however, testing this predic-
tion would require accounting for trial-to-trial variability
arising from uncontrollable noise sources such as photon
noise.

Summary

This paper describes a Bayesian algorithm (Brainard,
1994) for reconstructing full trichromatic images from the
responses of interleaved L, M, and S cones. The algorithm
is combined with a model of color naming and provides a
good account of measurements of the appearance of very
small (0.3 arcmin) monochromatic spots presented using
adaptive optics (Hofer, Singer, et al., 2005). In particular,
the model can account for the fact that small flashed
monochromatic spots elicit a wide variety of color names
and for the striking individual variation in naming
percentages. The latter is driven by corresponding
individual variation in the arrangement and relative
number of L, M, and S cones in each observer’s mosaic
and does not require any free parameters to describe the
individual observer differences.
A key emergent feature of the model is that stimulating

a single cone of a particular class should yield a different
color sensation, depending on the structure of the mosaic

surrounding the stimulated cone (see Figures 7 and 8). A
particular consequence of this feature is that the percent of
flashes named white are predicted to vary systematically
with the L:M cone ratio of the mosaic, in a manner
consistent with the experimental data.
The model also accounts for other color appearance

phenomena. It correctly predicts that within and between
observer variation in naming will decrease dramatically
for larger (8 arcmin) spots at suprathreshold levels, and it
describes distortions of the appearance of fine spatial
gratings while at the same time correctly predicting that
coarse gratings will be perceived veridically.
Finally, the model makes testable predictions for how

the color appearance of very small spots, measured within
observer, should depend on the fine structure of the cone
mosaic.
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Footnote

1

The high nearest neighbor correlation is often
expressed in the spatial frequency domain in terms of
the approximately 1/f falloff in image amplitude spectrum
with spatial frequency.
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