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Phase-shift estimation in sinusoidally illuminated
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Sinusoidally patterned illumination has been used to obtain lateral superresolution and axial sectioning in
images. In both of these techniques multiple images are taken with the object illuminated by a sinusoidal pat-
tern, the phase of the sinusoidal illumination being shifted differently in each image. The knowledge of these
phase shifts is critical for image reconstruction. We discuss a method to estimate this phase shift with no prior
knowledge of the shifts. In postprocessing we estimate randomly introduced, unknown phase shifts and pro-
cess the images to obtain a superresolved image. Results of computer simulations are shown. © 2009 Optical
Society of America
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. INTRODUCTION
he lateral resolution of any imaging system is limited by
he wavelength of imaging and the numerical aperture of
he system. But this limit holds only for uniform illumi-
ation and objects with linear absorption and emission
haracteristics. It is possible to break this limit by imag-
ng outside these constraints. Many techniques have been
eveloped to obtain superresolution in images by using
ff-axis illumination, nonlinear absorption and emission
f light, and nonuniform illumination of the object [1–16].

Structured illumination [1–5] is one such method
here the object is illuminated with a sinusoidal pattern

nstead of the conventional uniform illumination. The
ourier transform of the intensity of a sinusoid is three

mpulses—one at the origin and the other two at the posi-
ive and negative spatial frequency of the sinusoid. There-
ore, when a sinusoidal illumination is incident on an ob-
ect, the Fourier transform of the image consists of three
eplicas of the object Fourier transform, each centered at
ne of the three impulses. So in addition to the conven-
ional object Fourier transform centered at the origin in
ourier space, now there are two additional copies shifted
o the spatial frequency of the sinusoidal illumination.
hese shifted copies, within the passband of the imaging
ystem, carry portions of the object Fourier transform
hat would conventionally lie outside the passband and
hus give superresolution information beyond the diffrac-
ion limit.

To separate these three overlapping replicas of the ob-
ect Fourier transform, three or more images of the same
bject are taken with the phase of the sinusoid shifted by
istinct values in each image. After separating the shifted
eplicas of the object Fourier transform, we move them
ack to their true positions in spatial frequency space and
ombine them with the unshifted version, with appropri-
te weighting, to obtain an extended Fourier transform
1084-7529/09/020413-12/$15.00 © 2
nd an image superresolved beyond the diffraction limit.
hese reconstructions have superresolution along the di-
ection perpendicular to the fringes of the sinusoid: e.g., a
ertical fringe pattern increases the resolution along the
orizontal axis. The same procedure can be repeated with
he orientation of the sinusoidal illumination rotated by,
ay, 60° and 120° to obtain superresolution in all direc-
ions in Fourier space. The amount of superresolution ob-
ained is directly proportional to the spatial frequency of
he sinusoidal illumination. Therefore, assuming linear
bsorption and emission, up to twice the diffraction-
imited resolution can be obtained using this method.

As far as we know, sinusoidal illumination imaging for
uperresolution and axial sectioning has only been imple-
ented on stationary specimens such as fixed slides on a

ibration-free microscope [1–5,17–19]. The processing re-
uires very accurate knowledge of the phase shifts of the
inusoid in each image in order to recover the three over-
apping copies of the object Fourier transform. Usually
hese phase shifts are imparted in definite known steps
sing expensive, calibrated, precision actuation equip-
ent.
We are interested in imaging moving objects, such as

he in vivo retina, which show substantial interframe
igid body motion. Hence it is not possible to impart
nown phase shifts of definite step sizes to such a ran-
omly moving object specimen. In this paper we discuss a
ostprocessing method of estimating completely un-
nown, randomly introduced phase shifts and conditions
herein this method can give reliable results. Our tech-
ique applies for any orientation or spatial frequency of
he sinusoidal illumination. We can also estimate the ori-
ntation and spatial frequency of the sinusoidal illumina-
ion if they are unknown. We also provide simulation re-
ults. Our experimental results on a microscope follow in
paper to be published. We do not explicitly discuss the
009 Optical Society of America
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ptical sectioning application of sinusoidally illuminated
mages [17–19] in this paper, but the very same phase-
hift estimates are also critical for sectioning, and our es-
imation method remains valid for sectioning with no
eed for modifications.

. SUPERRESOLUTION WITH SINUSOIDAL
LLUMINATION
ere we assume interaction for light absorption and

mission linear in intensity. We demonstrate the case of
ncoherent illumination such as a metal halide lamp and
ncoherent fluorescent emission. The sinusoidal pattern
ould be produced by a grating in the illumination path
maged onto the object.

The phase estimation analysis that follows is also ap-
licable to the case where a coherent laser illumination is
sed to project sinusoidal fringes on a fluorescent object.
ur method should also be valid for coherent illumination
nd coherent imaging, which is the case of nonfluorescent
bjects under coherent laser fringe illumination. This is
ot directly illustrated in this paper and will be dealt
ith in detail in a future paper.

. Image Formation
he sinusoidal illumination pattern can be produced co-
erently by the interference of two tilted plane waves or

ncoherently by imaging a grating. For the case of coher-
nt illumination (and a fluorescent object emitting inco-
erent light), assume a vertical fringe illumination field,
s�x ,y�=cos�2�fox+�n�, with a phase shift �n and spatial

requency �fo ,0�, where fo� fc, the coherent cutoff fre-
uency of the system. The intensity of this sinusoidal il-
umination is

Is�x,y� =
1

2
�1 + cos�4�fox + 2�n��, �1�

hich has spatial frequency �2fo ,0� and phase shift 2�n.
epending on the method of illumination, the fringe con-

rast, m, may be less than unity and we have

Is�x,y� =
1

2
�1 + m cos�4�fox + 2�n��. �2�

n most simulations shown in this paper we use m=1, as-
uming maximum contrast of the sinusoid.

For the case of incoherent imaging of a grating onto the
uorescent object, we assume that the illumination and

maging path optical transfer functions (OTFs) are given
y H1 and H2, respectively. We assume that both optical
aths pass through a single limiting lens giving a com-
on coherent cutoff frequency limit, fc. It should be noted

hat in the case of a double-pass system where the illumi-
ation and imaging takes place using the same lens,
2�fx , fy�=H1�−fx ,−fy�. N such sinusoidally patterned im-

ges of the object are taken, where N�3. The Fourier
ransform (approximated by a discrete Fourier transform
n the computer) of the nth image, where n=1,2, . . . ,N, is
iven by [2,4]
Gn�fx,fy� =
1

2
H1�0,0�H2�fx,fy�Gg�fx,fy�

+
m

4
H1�2fo,0�ei2�nH2�fx,fy�Gg�fx − 2fo,fy�

+
m

4
H1�− 2fo,0�e−i2�nH2�fx,fy�Gg�fx + 2fo,fy�,

�3�

here Gg is the object Fourier transform. This can be vi-
ualized as shown in Fig. 1.

The Fourier transform of each image can be seen to
onsist of three overlapping replicas of the object Fourier
ransform—one unshifted copy, proportional to Gg�fx , fy�,
nd two shifted copies, proportional to Gg�fx−2fo , fy� and
g�fx+2fo , fy�. The two shifted versions carry the higher
patial frequencies that would conventionally lie outside
he passband of the imaging system.

. Reconstruction of Superresolved Image
t is essential to separate these three superimposed rep-
icas of the object’s Fourier transform in order to utilize
he superresolution in the two shifted copies. The N im-
ges with different phase shifts in the sinusoidal illumi-
ation are used to perform this segregation. If one takes
qually spaced phase shifts, then it is possible to arrive at
closed-form solution. However we cannot use this ap-

roach because we are interested in the case of randomly
ntroduced phase shifts in the sinusoidal illumination. We
eparate the three superimposed terms on a pixel-by-pixel
asis in the Fourier domain. For each pixel in the N im-
ge Fourier transforms, we consider a set of N linear
quations given by

AX = B, �4�

here

ig. 1. Visualization of structured illumination image in Fou-
ier domain.
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The matrix of coefficients, A, must be known accurately
n order to solve this equation. It includes the illumina-
ion OTF, H1, and modulation contrast, m, which are both
ommon to all the images. It also contains the phase
hifts, �n, which uniquely impart diversity to the N im-
ges. Hence the knowledge of �n is critical to the accuracy
f the matrix A and the recovery of the three overlapping
bject Fourier transform replicas. If this phase shift is ac-
urately known, then it is a simple matter of using singu-
ar value decomposition (SVD) and pseudoinverse [20] to
nvert A in order to recover the unknown overlapping
erms in vector X.

The inverse Fourier transform of the unshifted term
first term in vector X), weighted by the imaging OTF,

2�fx , fy�, gives an image equivalent to the conventional
mage taken with uniform illumination. This is treated as
ne component image, Ic1,

Ic1�fx,fy� = H2�fx,fy�Gg�fx,fy�, �8�

ontaining low frequencies to be used later to form a com-
osite superresolved image. The OTF for this component
mage is given by

otf1�fx,fy� = H2�fx,fy�. �9�

The two shifted copies of the object Fourier transform
second and third terms in vector X), also weighted by the
maging OTF, H2�fx , fy�, are moved to their true positions
n the spatial frequency domain as I1� and I1�. The subpixel
hift is accomplished by Fourier methods,

I1��fx,fy� = FT�IFT�H2�fx,fy�Gg�fx − 2fo,fy��

�exp�− i2��2fo�x��

= H �f + 2f ,f �G �f ,f �, �10�
2 x o y g x y
I1��fx,fy� = FT�IFT�H2�fx,fy�Gg�fx + 2fo,fy��

�exp�+ i2��2fo�x��

= H2�fx − 2fo,fy�Gg�fx,fy�. �11�

e note here that in our simulation results we use a
aised-cosine guard band padding the object to prevent er-
ors in implementing the sub-pixel shift.

The two terms, I1� and I1�, are now added so as to form a
wo-component image Fourier transform, Ic2, which con-
ains spatial frequencies above the diffraction limit in one
irection in Fourier space,

Ic2�fx,fy� = �H2�fx + 2fo,fy� + H2�fx − 2fo,fy��Gg�fx,fy�.

�12�

he OTF for Ic2 is given by

otf2�fx,fy� = �H2�fx + 2fo,fy� + H2�fx − 2fo,fy��. �13�

c2 can be used, along with Ic1, to form a single superre-
olved image.

Similarly, this is repeated with the orientation of the
inusoidal illumination rotated by, say, 60° and 120°, to
btain additional component images, Ic3 and Ic5, which
rovide low frequency information, having the OTF given
y Eq. (9) and Ic4 and Ic6, which provide high frequency
uperresolution along the 60° and 120° orientations in the
ourier domain, which have OTFs similar to Eq. (13), but
otated in Fourier space.

These six component images can be combined with ap-
ropriate weighting and OTF compensation to obtain the
econstructed image that has superresolution in all direc-
ions in the Fourier domain. We use the following filter
21] to OTF compensate and combine these six component
mages appropriately to obtain the reconstructed superre-
olved image:
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Irec�x,y� = IFT	
i=1

M � Îci�fx,fy�otfi
*�fx,fy� �

�i�O�fx,fy�

�Ni

c + 

j=1

M

�otfj�fx,fy��2 �
�j�O�fx,fy�

�Nj

�� ,

�14�

here M is the number of component images, Ici, that go
nto forming the reconstruction. In the present case with
hree orientations we have M=6; each orientation of the
inusoidal illumination contributing two component
mages—one conventional and one with superresolution
n one direction in Fourier space. The term �O is the ob-
ect power spectrum. This can be estimated from the con-
entional image using a generalized model for the object
ower spectrum [22–25]. We assume that the object is
dentical in all the component images; hence �O is the
ame for all Ici in this filter. �Ni is the power spectrum of
he noise in each component image; hence it is separately
alculated for each Ici [22–25]. For example it can be com-
uted as the average power spectrum in the farthest cor-
er of the Fourier transform of each Ici outside the extent
f otfi. The constant �i is a factor arising from the effect of
stimation of Ici by the SVD and pseudoinverse on the sig-
al and noise. It depends on the number of images used to
btain each component image, Ici, and on the phase shifts
nvolved in the sinusoidal illumination in each image. For
xample, having multiple images with nearly identical
hase shifts will result in less signal than equally spaced
hase shifts. We have used �i=1 in the simulations shown
n this paper. The constant c may be used to weight the
ombination to give an image that might appear better to
he observer in terms of trading off edge sharpness versus
oise artifacts. In our simulations we set c=1, which is
he minimum mean-squared error solution [21,26]. More
etails about the effect of signal-to-noise ratio (SNR) in
his method of image reconstruction will be dealt with in
nother paper [27]. Next we will show how to estimate
he phase shifts when they are unknown.

. PHASE-SHIFT ESTIMATION FOR
INUSOIDALLY ILLUMINATED IMAGES
he phase shift of the sinusoidal illumination in each im-
ge can be estimated a posteriori in several ways [28,29].
ne way is to average the image along the sinusoid fringe
irection and then fit an ideal sinusoid to that average.
he estimated phase is the phase of that sinusoid. But
ariations in the object intensity perturb this estimation.
t is also difficult to average the image along the sinusoid
f its orientation is not exactly parallel to one of the pixel
irections on the CCD, since the interpolation of the val-
es of pixels parallel to the orientation of the sinusoid in-
roduces error in the phase-shift estimate. This technique
lso poses the difficulty that when the frequency of the
inusoidal illumination increases, the contrast of the
ringe is reduced by a factor of H1�2fo ,0�H2�2fo ,0� and the
stimated phase becomes increasingly noisy.

Another technique is to vary the estimates of the phase
hifts in such a way as to minimize the residual sinu-
oidal patterned artifacts in the reconstructed image [19].
his method is somewhat time-consuming and might
eed good initial estimates of the phase shift to avoid
tagnation.

In our approach, we take the Fourier transform of the
mage of a sinusoidally illuminated object. In the Fourier
omain we extract the phase of the shifted impulse aris-
ng from the spatial frequency of the sinusoidal illumina-
ion. The Fourier transform of the intensity of a vertical
ringe has three peaks located at (0,0) �2fo ,0�, and
−2fo ,0�. The value of the Fourier transform, Gn, given by
q. (3), at �2fo ,0� is

Gn�2fo,0� =
1

2
H1�0,0�H2�2fo,0�Gg�2fo,0�

+ ei2�n
m

4
H1�2fo,0�H2�2fo,0�Gg�0,0�

+ e−i2�n
m

4
H1�− 2fo,0�H2�2fo,0�Gg�4fo,0�.

�15�

In the above equation the third term, e−i2�n�m /4�
H1�−2fo ,0�H2�2fo ,0�Gg�4fo ,0�, is much smaller than

he second term, ei2�n�m /4�H1�2fo ,0�H2�2fo ,0�Gg�0,0�,
ecause it is proportional to �Gg�4fo ,0���Gg�0,0�,
or an extended object. Similarly the first term,
1/2�H1�0,0�H2�2fo ,0�Gg�2fo ,0�, is much smaller than
he second term, ei2�n�m /4�H1�2fo ,0�H2�2fo ,0�Gg�0,0�,
ecause �Gg�2fo ,0���Gg�0,0� for an extended object as long
s m�H1�2fo ,0�� is not much smaller than �H1�0,0��. Hence
he first and third terms have a relatively small contribu-
ion to the Fourier transform of the image at the location
2fo ,0� as long as fo / fc is not too close to 0 or 1, and the
ost significant contribution comes from the second term.
lso Gg�0,0� and m are real valued, as are H1�2fo ,0� and
2�2fo ,0� when we use well-corrected optics with no aber-

ations. The dominant phase contribution to this equation
hen comes from ei2�n. Hence the phase shift of the sinu-
oidal illumination is approximately the phase of this
eak, Gn�2fo ,0�, in the Fourier transform of the image,

2�n  tan−1� imag�Gn�2fo,0��

real�Gn�2fo,0�� � . �16�

ere the arctangent is computed using the atan2 function
n MATLAB where the resulting phase lies between −� and
. If the sinusoidal illumination intensity has a general-

zed spatial frequency �2fox ,2foy� for a rotated fringe pat-
ern, then the phase shift can be similarly estimated from
he phase of Gg�2fox ,2foy�.

If the spatial frequency of the sinusoidal illumination is
ery low, then the first and third terms in Eq. (15) may
ecome nonnegligible as compared with the second term
nd their contribution then cannot be ignored, and the
hase estimate might then be inaccurate. Also, at very
igh spatial frequencies of the sinusoidal illumination,
pproaching the cutoff frequency, the value of
1�2fo ,0�H2�2fo ,0� will attenuate the sinusoid and lower

ts contrast substantially, and again the first term may
ot be negligible with respect to the second term, and the
NR will be low, decreasing the accuracy of the phase es-
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imate. If the illumination and imaging OTFs have aber-
ations, then there might be some inaccuracy due to
hase contributions from the aberrations. Also note that
n the case of a double-pass system, where the illumina-
ion and imaging use the same lens, H2�fx , fy�
H1�−fx ,−fy�, odd aberrations cancel out, and even aber-
ations double in value [30], affecting the phase-shift es-
imate.

. SIMULATION RESULTS
o demonstrate this approach to sinusoidal phase-shift
stimation, we simulated an incoherent sinusoidal illumi-
ation setup with three orientations of the sinusoid, ro-
ated 0°, 120°, and 240°, and an incoherent image with no
berrations. We use a pristine object shown in Fig. 2(a)
nd its Fourier transform is shown in Fig. 2(b). It should
e noted that all Fourier transforms displayed in this pa-
er have been stretched to show details.

. Accuracy of Phase-Shift Estimate
he accuracy of our phase-shift estimates varies with
ach orientation because when a significant component of
he unshifted object Fourier transform overlaps with the
eak of the shifted object Fourier transform, the contribu-
ion from the first term in Eq. (15) increases, decreasing
he accuracy of the estimated phase. Our simulation ob-
ect has numerous vertical and horizontal edges causing
istinct horizontal and near-vertical streaks in the Fou-
ier domain, as seen in Fig. 2(b), contributing to the varia-
ion in overlap with the orientation of the sinusoidal illu-
ination of our object.
The accuracy of our estimates also varies with the spa-

ial frequency of the sinusoidal illumination [28]. As
hown in Fig. 3, we achieved accuracy better than 6
10−3 rad RMS for fo / fc between 15% and 85%. As ex-

ected, the error in the estimate increases at higher spa-
ial frequencies of the sinusoidal illumination due to the
eduction in the contrast of the sinusoidal illumination
roportional to mH1�2fo ,0�H2�2fo ,0�. At lower fo, error in
he estimate increases because the value of the first term
n Eq. (15) increases. Figure 4 shows the plot of RMS er-
or in our estimates for different values of SNR when fo
50% fc. The accuracy in the estimates for the worst case
as better than 1.5�10−3 rad RMS for moderate SNR.
he error in our estimates increased up to 4�10−3 rad
MS for SNR in the range of 2–7. Figure 5 shows the
ame for a sinusoidal illumination frequency of fo
91% fc. Here the accuracy was better than 3�10−2 rad

or moderate to high SNR. The error increased up to
.95 rad for lower SNR in the range of 2–13 since for
hese levels of SNR the reduced contrast of the sinusoid is
omparable to the noise floor. This range of error would
efinitely give rise to artifacts in the reconstructed image.
We demonstrate the effect of artifacts arising from er-

or in phase-shift estimates in Fig. 6(a). The frequency of
he sinusoidal illumination used here is at approximately
4% of cutoff frequency and there is no noise. We pur-
osely introduced an error of 0.5 rad in the phase-shift es-
imate for one of three images (making the RMS error
.2887 rad) with equally spaced phase shifts of 0, 2.0944,
nd 4.1888 rad, i.e., 0°, 120°, and 240° for one orientation
ig. 2. (a) Pristine object; (b) Fourier transform of pristine
ig. 3. RMS error in phase-shift estimate versus spatial fre-
uency of sinusoidal illumination, f / f with no noise [28].
o c
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f the sinusoidal illumination used in this reconstruction.
he residual fringes are parallel to that orientation of
inusoidal illumination. The estimated phase shifts are
sed to segregate the three overlapping terms contained

n each sinusoidally illuminated image—the unshifted
nd two shifted copies of the object’s Fourier transform. If
he phase-shift estimate is inaccurate, this segregation
emains incomplete. Therefore each incorrectly segre-
ated term will now still contain some residual amount of
verlapping shifted and unshifted copies of the object’s
ourier transform. These will give rise to multiple re-
idual peaks in each incorrectly segregated term. When
hese terms are combined, this gives rise to a reconstruc-
ion that contains multiple incorrect residual peaks in the
ourier domain. The Fourier transform of the recon-
tructed image in Fig. 6(b) shows distinct residual-peak
rtifacts, indicated by white arrows, which lie along the
irection perpendicular to the orientation of the sinu-
oidal illumination which contained the error in the
hase-shift estimate. These peaks in the Fourier domain
ranslate into residual fringes in the image domain. The
esidual error of the phase shift, 0.2887 rad, which caused
hese artifacts, was purposely made large in order to pro-
uce distinctly noticeable artifacts. This phase-shift error
s substantially larger than the errors of our phase-shift
stimates plotted in Fig. 3–5, except for (a) very small
o / fc, (b) fo / fc close to unity, and (c) for SNR below 13 in
ig. 5 for which fo / fc=91%.

ig. 4. RMS error in phase-shift estimate versus SNR for sinu-
oidal illumination with fo=50% fc [28].

ig. 5. RMS error in phase-shift estimate versus SNR for sinu-
oidal illumination with f =91% f [28].
o c
The visibility of the artifact in the image is dependent
n the contrast of the sinusoidal illumination and the er-
or in the phase estimate. If the sinusoid has very low
ontrast, such as at very high frequencies of the sinu-
oidal illumination for the case of incoherently imaging a
rating, then even if the residual peak artifacts are
resent in the Fourier domain, in the reconstructed image
he resulting fringe artifacts may be very dim or may not
ven be visible. But for high contrast sinusoidal illumina-
ion at spatial frequencies such as 50% of cutoff, it is very
mportant to have accurate estimates of the phase shift
ecause residual peaks in the Fourier domain of the re-

ig. 6. (a) Reconstructed image with fringe artifacts due to a
arge error in the phase-shift estimate in one orientation of sinu-
oidal illumination; (b) Fourier transform of reconstructed image
ith residual peak artifacts (indicated by white arrows) due to a

arge error in the phase-shift estimate in one orientation of sinu-
oidal illumination.



c
a

i
s
F
fi
o
t
u
c
T
c
s
m
s
d
t
a
p
u
f
q
m
t
s

w
p
p
t
p
e
e
s
t
s
2
t
a
i
t
u
r

B
T
t
i
v
p
s
8
s

t
F
s
9
t
o

F
f

F
t

Shroff et al. Vol. 26, No. 2 /February 2009 /J. Opt. Soc. Am. A 419
onstruction will be strong enough to be visible as fringe
rtifacts in the image.
If the orientation or spatial frequency of the sinusoidal

llumination is not known or is uncertain, then it is pos-
ible to approximately locate the peak, Gn�2fo ,0�, in the
ourier domain of the structured illumination image by
nding the local maximum (other than the dc peak at the
rigin), and upsample this peak to obtain its precise spa-
ial frequency. We found from computer simulations that
psampling Gn�2fo ,0� to subpixel accuracy [31,32] signifi-
antly improves the accuracy of the phase-shift estimate.
he RMS error in the phase-shift estimate (which can be
omputed since in simulation we know the true phase
hift) versus the upsampling factor of the sinusoidal illu-
ination obtained for different orientations of the sinu-

oidal illumination is plotted in Fig. 7. The RMS error
rops sharply for upsampling factors up to 10 or 15 and
hen there are smaller improvements after that, on aver-
ge. This trend in the curve is maintained even in the
resence of substantial noise. The curve shown in Fig. 7
sed images with Gaussian noise having SNR of 15.5 and
or a sinusoid at 50% of cutoff frequency. We tried fre-
uencies up to 93% of cutoff and this trend of improve-
ent in phase-shift estimates for upsampling factors up

o 10 to 15 appears for higher frequencies of the sinu-
oidal illumination as well.

It should be noted here that care needs to be taken
hile upsampling the Fourier transform of the image. For
erfectly vertical or horizontal sinusoidal illumination
atterns, the peaks from the sinusoidal illumination in
he Fourier domain lie exactly on the fx or fy axes. Upsam-
ling methods may exacerbate the ringing effect, from the
dges of the image, in the Fourier domain and introduce
rror in the upsampled phase-shift estimate. So, from this
imulation onwards, we used a sinusoidal illumination
hat is neither exactly vertical nor horizontal: we used
inusoidal illumination that made roughly 11°, 131°, and
51° angles with respect to the vertical fy axis instead of
he 0°, 120°, and 240° orientations we used before. Using

guard band padding the sinusoidally patterned image
mproves phase-shift estimates for frequencies lying on
he fx or fy axes. In our simulation results that follow, we
se a raised cosine guard band of width 20 pixels sur-
ounding the simulated object.

ig. 7. RMS error in phase-shift estimate versus upsampling
actor, f =50% f , SNR=15.5.
o c
. Image Reconstruction Examples
hese phase-shift estimates can be used to recover the

hree copies of the object Fourier transform from the N
mages using singular value decomposition and pseudoin-
erse [20]. The reconstructed image is formed by appro-
riate weighting and superposition of the retrieved object
pectra as given by Eq. (14). All images discussed in Figs.
–12 contain no noise. The effect of noise on image recon-
truction is discussed at the end of this section.

Figure 8(a) shows a simulated conventional image
aken with uniform illumination and Fig. 8(b) shows its
ourier transform. Fig. 9(a) is the OTF-compensated ver-
ion of the conventional image, given by Eq. (14), and Fig.
(b) shows its Fourier transform. The detailed features of
he bricks and leaves, which were visible in the pristine
bject shown in Fig. 2(a), cannot be distinguished in ei-

ig. 8. (a) Conventional image; (b) Fourier transform of conven-
ional image.
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her Figs. 8(a) and 9(a). This is because the spatial fre-
uencies of these fine features of the image lie outside the
xtent of the conventional OTF, seen in Fig. 8(b), and
imple deconvolution does not increase the extent of the
TF of the image as can be seen in Fig. 9(b). Therefore

he spatial frequencies containing these fine features of
he object are entirely missing in both the conventional
mage and its OTF-compensated version. Hence, we need
uperresolution techniques to reveal these fine features of
he object.

Figures 10–12 show superresolved reconstructions and
heir Fourier transforms. We notice a distinct improve-
ent in the resolution of fine details in bricks and leaves

n each image. We also observe a corresponding increase
n the extent of the effective OTF in the Fourier trans-
orms of the superresolved images. The amount of super-

ig. 9. (a) Conventional image with OTF compensation; (b) Fou-
ier transform of OTF compensated conventional image.
esolution (and effective increase in OTF coverage) is di-
ectly proportional to the spatial frequency of the
inusoidal illumination in the image. This increase can-
ot be seen in the Fourier transforms of the conventional

mage or the deconvolved conventional image shown in
igs. 8(b) and 9(b). Therefore this is indeed optical super-
esolution we are observing in the images shown in Figs.
0–12. It should be noted that all the Fourier transform
gures shown here have been stretched substantially to
how dim details such as residual-peak artifacts, which
re usually quite dim compared to the maximum in the
ourier transform.
Figure 10(a) shows the OTF-compensated superre-

olved image having 75% superresolution �f =75% f �, ob-

ig. 10. (a) Image with 75% superresolution, using estimated
hase shifts (RMS error less than 4�10−3 rad); (b) Fourier trans-
orm of image with 75% superresolution, using estimated phase
hifts. White arrows indicate locations of potential residual
eaks.
o c
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ained from three sinusoidally patterned images with
andomly spaced phase shifts (−0.4024, 2.0184,
.0350 rad, i.e., −23.0558°, 115.6458°, 59.3011°.) Here the
hase-shift estimation employed 36 times upsampling.
here was an RMS error of less than 4�10−3 rad for the

hree orientations of the sinusoidal pattern. We saw no
ignificant artifacts such as residual sinusoidal patterns
n the reconstructed image or residual peaks in its Fou-
ier transform shown in Fig. 10(b). If the phase-shift esti-
ate had not been good enough, the Fourier domain
ould have contained residual-peak artifacts, such as
ere seen in the case of Fig. 6(b). The locations of possible

esidual peaks are indicated by white arrows in
ig. 10(b).

ig. 11. (a) Image with 86% superresolution, estimated phase
hifts (RMS error less than 7�10−3 rad); (b) Fourier transform of
mage with 86% superresolution, estimated phase shifts. White
rrows indicate locations of dim residual peaks.
Figure 11(a) shows a reconstruction with 86% super-
esolution. This was obtained from three sinusoidally pat-
erned images with equally spaced phase shifts (0, 2.0944,
.1888 rad, i.e., 0°, 120°, and 240°) and the phase-shift es-
imation employed 36 times upsampling. There was an
MS error of less than 7�10−3 rad for each orientation of

he sinusoidal illumination. We saw low contrast residual
oiré patterned artifacts in the regions having a uniform

ackground in the reconstructed image. Fine features in
he image such as the details in the bricks and leaves are
mportant from the perspective of superresolution be-
ause they cannot be resolved in the conventional image,
ut are resolved in this image. The residual artifacts are
ot apparent on the bricks and leaves in this image. Its

ig. 12. (a) Image with 91% superresolution, estimated phase
hifts (RMS error less than 2�10−2 rad); (b) Fourier transform of
mage with 91% superresolution, estimated phase shifts. White
rrows indicate locations of residual peaks.
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ourier transform shown in Fig. 11(b) contains dim re-
idual peaks indicated by white arrows.

Figure 12(a) shows a reconstruction with 91% super-
esolution. This was also obtained from three sinusoidally
atterned images with equally spaced phase shifts (0,
.0944, 4.1888 rad i.e., 0°, 120°, and 240°) and the phase-
hift estimation employed 36 times upsampling. There
as an RMS error of less than 2�10−2 rad for each orien-

ation of the sinusoidal illumination. Here we observe
lear residual fringe artifacts throughout the recon-
tructed image as well as residual peaks, indicated by
hite arrows, in its Fourier transform shown in Fig.
2(b). Here the residual fringe artifacts are producing a
agged, moiré effect on the edges of the bricks and leaves
n this image. There is also a moiré pattern visible in uni-
orm white regions in the image. Usually these fringe ar-
ifacts are more clearly perceived as a uniform fringe or
heckerboard-type pattern in such uniform backgrounds,
eflecting an insufficiently accurate phase-shift estimate.

These results confirm that as long as there is reason-
bly high contrast in the sinusoidal illumination in the
mages our phase-shift estimate is accurate enough to
rovide artifact-free reconstruction. In general we saw in
ur simulations that for fo / fc between 15% and 85% the
rror in the phase-shift estimate is low and therefore the
econstructed image shows no significant artifacts. But if
he contrast of the sinusoidal illumination, and effectively
he signal in the reconstructed image, goes down, as was
he case for fo / fc of 91%, the error in the phase-shift esti-
ate increases and becomes significant enough to result

n visible artifacts in the reconstructed image and its Fou-
ier transform.

The effect of noise on phase-shift estimates has been
iscussed in Subsection 4.A. Now we discuss the effect of
oise on the superresolved image reconstructions. Noisy

mages can be improved by summing multiple image re-
onstructions to improve the SNR. Figure 13(a) shows a
econstructed image having 75% superresolution. This
mage has been obtained by processing sinusoidally pat-
erned images having an SNR of 124 (defined as the ratio
f the mean of the signal to the standard deviation of
oise). Gaussian noise was added in the sinusoidally pat-
erned images. The noise in the measured images results
n colored noise in the reconstructed superresolved image.
he fine details in the bricks and leaves, which are of im-
ortance from the perspective of superresolution, are lost
n this noise. The Fourier transform of this reconstruc-
ion, shown in Fig. 13(b), shows noise drowning the signal
n the periphery of the extended OTF, which contains su-
erresolution information. This part of the image trans-
orm contains a signal that has been attenuated propor-
ional to �m /4�H1�2fo ,0�H2�2fo ,0�. Therefore if the
ontrast of the sinusoidal illumination is low, such as for
he case of fo=75% fc, then effectively the strength of the
uperresolution signal is low, and hence the effective SNR
s poor. This makes the image reconstruction sensitive to
oise at higher spatial frequencies of the sinusoidal illu-
ination.
We can, however, improve the SNR in the superre-

olved images by summing multiple images, as is com-
only done for the case of noisy data. In Fig. 14(a) we
ave summed 10 image reconstructions with independent
oise realizations to obtain a substantially improved im-
ge. Here the details in the bricks and leaves are clear
nd the usefulness of the 75% superresolution is more evi-
ent than was in the case of a single noisy reconstruction.
he Fourier transform of this image, shown in Fig. 14(b),
lso shows clearly that now the superresolution signal is
tronger in the peripheral regions of the extended OTF.
or lower values of superresolution we will need to sum

ewer images. The effect of noise is discussed in more de-
ail in [27] where we use the multiframe filter in Eq. (14)
o simultaneously add the component images obtained
rom multiple noise realizations instead of a simple aver-
ge of multiple image reconstructions shown here.

ig. 13. (a) Single image reconstruction with 75% superresolu-
ion from noisy structured illumination images having an SNR of
24, using estimated phase shifts (RMS error less than 0.3 rad);
b) Fourier transform of noisy reconstruction with 75%
uperresolution.
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. CONCLUSIONS
e have developed a method of estimating the phase shift

n the sinusoidal illumination pattern for images used to
xtract superresolution information in fluorescence im-
ges. The technique, as demonstrated in this paper, as-
umes fluorescence or object incoherence. It can be used
or both coherent laser fringe illumination as well as in-
oherent sinusoidal illumination. It can also work for co-
erent imaging modalities where the object is nonfluores-
ent, which will be discussed in a future paper. This
echnique is also directly applicable to the axial section-
ng application of sinusoidally illuminated images.

ig. 14. (a) Sum of 10 noisy images with 75% superresolution,
ach obtained from sinusoidally patterned images having an
NR of 124, using estimated phase shifts (RMS error less than
.3 rad); (b) Fourier transform of sum of 10 noisy images with
5% superresolution.
We assume no prior knowledge about the phase shifts
n our method. We have shown the phase-shift estimation
o be robust to noise. The estimate deteriorates in high
oise conditions and for extremely low or extremely high
patial frequencies of the sinusoidal illumination. We
ave modified the image reconstruction to handle random
hase shifts. We have achieved an error less than
0−2 rad in our phase-shift estimates for spatial frequen-
ies of the sinusoidal illumination at 15%–85% of cutoff
requency and artifact-free image reconstructions. We
ave also taken images from a fluorescence microscope
nd used a sinusoidal illumination to achieve superreso-
ution. These results will be discussed in a future publi-
ation. Our estimates can also be used as an initial start-
ng point for optimization routines that minimize residual
rtifacts in the reconstruction such as shown in [19]. We
an estimate unknown spatial frequencies and angular
rientations of the sinusoidal illumination. The phase es-
imation technique is valid for any spatial frequency and
ngular orientation of the sinusoidal illumination.
Our future work will include imaging moving and non-

uorescent in vivo objects, such as a living human retina.
he ability to apply such superresolution techniques to
oving objects greatly enhances the versatility of struc-

ured illumination imaging to encompass a broad range of
iological imaging. It opens up areas of dynamic imaging
nd enables the application of superresolved imaging to
n vivo clinical imaging, life science research, and biotech-
ology.
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