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A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since
then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence
tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which indi-
vidual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies
of the retina that were previously impossible.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to look inside the living human eye is central to our
understanding of how the normal eye works and the diseased eye
fails. This article focuses on technological advances in the spatial
resolution of retinal imaging during the last quarter century and
some of the scientific discoveries they have made possible. These
advances have transformed retinal imaging from a macroscopic
to a microscopic modality in which individual cells can now be re-
solved. There are many books and review articles that address
these advances. Relevant books include (Huang, Kaiser, Lowder, &
Traboulsi, 2006; Masters & Thompson, 2001; Porter, Queener, Lin,
Thorn, & Awwal, 2006; Schuman, Puliafito, & Fujimoto, 2004) and
review articles include Costa et al. (2006), Drexler and Fujimoto
(2008), Fujimoto (2003), Godara, Dubis, Roorda, Duncan, and Car-
roll (2010), Hampson (2008), Miller, Kocaoglu, Wang, and Lee
(2011), Miller and Roorda (2009), chap. 17, Podoleanu (2005), Pod-
oleanu and Rosen (2008), Roorda (2010), Rossi et al. (2011), Wilt
et al. (2009), Wojtkowski (2010).

It has never been easy to peer inside the living eye. Though sev-
eral investigators in the 19th century were aware of the illumina-
tion conditions necessary to cause the otherwise impenetrable
pupil to glow red, they failed to obtain a clear view of the living ret-
ina until Helmholtz invented the ophthalmoscope (Helmholtz,
1851). Since then, the evolution of this instrument has been punc-
tuated by important, if occasional, technical advances such as add-
ing a camera that could record retinal images on film (Jackman &
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Webster, 1886). Surprisingly, before the late 1980s there were
few improvements in optical resolution since Helmholtz’s land-
mark invention. A rare example is the incorporation of the elec-
tronic flash, invented ~30 years earlier by Edgerton, that allowed
exposures brief enough to avoid eye motion blur (Ogle & Rucker,
1953). In contrast, the last quarter century has witnessed gains
in spatial resolution that have completely transformed our capac-
ity to recover information from the retinal image.

2. The first glimpses of retinal cells in the living eye

The fact that ophthalmoscopy lacked the resolution to see single
cells a quarter of a century ago did not preclude drawing inferences
about the effects of single cells on vision well before then. Perhaps
the best example is the brilliant paper of Hecht, Schlaer, and
Pirenne (1942) in which they concluded that ~10 photons are re-
quired to detect a flash at absolute threshold. Because these 10
quantal absorptions almost certainly occurred in 10 different
receptors, they could conclude that absorption of one photon of
light was sufficient to excite a single rod. Their argument was nec-
essarily a statistical one because the poor optical quality of the eye
precludes stimulating one and only one rod in the human eye.
However, there is another class of photoreceptor, the short wave-
length sensitive cones, that are rare enough in the retina that a fo-
cused point source, suitably arranged to stimulate only that class of
cell, can stimulate only one cell at a time. Capitalizing on this
unique aspect of this cone submosaic, MacLeod, Hayhoe and I
(Williams, MacLeod, & Hayhoe, 1981) showed that subjects could
reliably detect a flash of light that stimulated a single cone
photoreceptor.
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These experiments lead to psychophysical methods to charac-
terize the arrangement and spacing of cones that relied on aliasing
effects caused by imaging interference fringes on the retina
(Williams, 1985, 1988). Artal and Navarro (1989) wondered
whether another variant of interferometry, based on the interfer-
ence of light returning from the retina rather than light entering
the eye, could be used to estimate the spacing of cones in the living
eye. Their approach was derived from a technique used in astron-
omy, stellar speckle interferometry, that had been developed to re-
cover high spatial frequency information from speckled images,
such as whether an object in the sky was a single or a binary star
(Labeyrie, 1970). They collected images of the speckle patterns
generated by illuminating small patches of living human retina
with coherent light. The average power spectrum of multiple
images revealed a ring corresponding to spatial frequency compo-
nents of the cone mosaic, providing the first evidence about the
granularity of the cone mosaic obtained from images of the living
human eye.

Unfortunately, Artal and Navarro’s method did not allow for the
direct observation of the cone mosaic because the cones are ob-
scured by the interference of the coherent light reflected from mul-
tiple layers of the retina. Experiments in animals had previously
demonstrated direct imaging of receptors. In 1985, Land and
Snyder (1985) showed in the snake and Jagger (1985) showed in
the cane toad that it is possible to image photoreceptor cells
through the natural optics of the intact eye. While these observa-
tions were made on animal eyes with good optics and unusually
large receptors, they encouraged the possibility that this could also
be achieved in the human eye. Cideciyan and Jacob (1994) noticed
small bright spots in fundus images from patients who were
carriers of x-linked retinitis pigmentosa. They speculated that
these spots were cones back-illuminated by the highly-reflective
tapetum-like fundus in these patients.

Miller, Williams, Morris, and Liang (1996) constructed a custom
fundus camera specifically designed to search for single cones in
the normal human eye. This camera illuminated the retina with a
small, ~7 min of arc, field of monochromatic light. To avoid
speckle, the laser source used was deliberately rendered incoher-
ent with a spinning diffuser. Careful attention was paid to the cor-
rection of defocus and astigmatism. With this instrument they
obtained the first direct images of the cone mosaic in the normal
living human eye, examples of which are shown in Fig. 1. Cones
continue to be a favorite target for retinal microscopy because they
act like tiny waveguides, and the light that enters them is preferen-
tially redirected back through the pupil, producing a high contrast
mosaic of bright spots in the retinal image. There is a common mis-
conception that additional optical techniques such as adaptive op-
tics are required to image the cone mosaic in the living eye, but
Miller et al. showed, and many others have since confirmed (e.g.
Pircher, Baumann, Géttzinger, & Hitzenberger, 2006; Vohnsen,
Iglesias, & Artal, 2004; Wade & Fitzke, 1998), that cellular imaging
is possible outside the foveal center in young eyes with good opti-
cal quality and careful correction of defocus and astigmatism
alone. These early glimpses of structures as small as single cones
in the living human eye encouraged the development of new tech-
nologies, especially adaptive optics, to improve the resolution of
retinal imaging.

3. The scanning laser ophthalmoscope

The invention of the scanning laser ophthalmoscope (SLO) by
Webb, Hughes, and Pomerantzeff (1980) represented a radical
departure from the design of conventional fundus cameras of the
time and laid the groundwork for modern retinal microscopy. They
developed what they called initially a “flying spot TV ophthalmo-
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Fig. 1. The first images taken of the human photoreceptor mosaic in the human eye
with a high magnification fundus camera and the method developed by Miller et al.
(1996). (A) Image obtained at 0.5° from the foveal center. (B) Image obtained at 2.5°
from the foveal center.

scope” that raster-scanned a single laser spot onto the retina, col-
lecting the returning light onto a detector with much greater
sensitivity than film. The use of a dilated pupil to collect the light
and a photomultiplier tube for light detection made it possible to
collect video images of the retina with significantly less light expo-
sure than the conventional film-based fundus cameras of the time.
In 1987, Webb, Hughes, and Delori introduced the principle of con-
focal detection into an improved SLO. Minsky (1957), better known
for his contributions to artificial intelligence, first proposed the
idea of confocal imaging in a patent for a scanning microscope. Sur-
prisingly, it took 30 years for this simple and effective principle to
find its way from microscopy into ophthalmoscopy. The confocal
SLO used the same optical path for scanning the laser spot on the
retina and for delivering the returning light to the detector, as
shown in Fig. 2. This double passage of light through the scanning
mirrors produced a stable image at the detector of the scanned
spot on the retina. A confocal pinhole just in front of the light
detector collected most of the light from the retina while rejecting
light originating from planes other than the retina. Though the
instrument did not improve lateral resolution over that which
could be achieved with conventional fundus cameras of the day,
it did improve axial resolution, significantly increasing image con-
trast. As shown in Fig. 3, the axial resolution of the confocal SLO
was about 300 um, modest by today’s standards, but it represented
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Fig. 2. Optical layout of the first confocal SLO. The light path is shown at one instant in time. Mirrors are shown as transmissive for simplicity. Pupil conjugate planes are
labeled with P,. P5 is a virtual image of the pupil, converted to a real image at P4 by a microscope objective. Retinal conjugate planes are labeled with R,,. R3 corresponds to the
confocal pinhole just in front of the light detector. From Webb, Hughes, and Delori (1987).

100 um
commercial
I
AO-SLO
AO flood
illumination

I commercial OCT
| UHR-OCT

+ UHR-AO-OCT

Fig. 3. Comparison of (top) cell size in a histological cross section of the human
retina with (bottom) the resolving capability of the major types of retinal imaging
modalities with and without AO. The vertical and horizontal dimensions of the solid
black symbols denote, respectively, the lateral and axial resolution of the
instruments. Examples shown include the commercial confocal scanning laser
ophthalmoscope (SLO), adaptive optics confocal scanning laser ophthalmoscope
(AOSLO), adaptive optics flood illumination, commercial OCT, ultrahigh-resolution
OCT (UHR-OCT), and ultrahigh-resolution OCT with adaptive optics (UHR-AO-OCT).
GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL,
outer plexiform layer; ONL, outer nuclear layer; PL, photoreceptor layer; RNFL,
retinal nerve fiber layer. From Miller (2011).

the first improvement in resolution since the flash tube prevented
eye motion blur. Moreover, the scanning technology and confocal
detection method introduced by Webb and his colleagues were
key elements of many of the high resolution, microscopic retinal
imaging technologies that were soon to follow.

4. Improvements in axial resolution through OCT

The fundus cameras and confocal SLOs ca. 1990 were designed
on the premise that light is made of particles that travel in straight

lines. Though the wave nature of light had been proposed by
Huygens (1678) and confirmed by Young’s famous double slit
interference experiment (1804), it had yet to impact methods to
image the retina. But in the 1990s, optical coherence tomography
harnessed the wave nature of light, thereby achieving an unprece-
dented axial resolution in retinal images. The retina is a three-
dimensional structure from 100 to 400 pum thick that is organized
into distinct layers of cells and the synaptic connections between
them. Each layer has a specific role in the circuitry that transforms
the retinal image into signals the brain can interpret, and each can
be affected differently in retinal disease. OCT provided for the first
time a high-resolution cross-sectional view through the living ret-
ina, comparable to a histological section but without requiring ret-
inal excision. It is important to emphasize that OCT did not just
provide an increase in resolution; it literally provided a view of
the living retina that was previously completely inaccessible. This
feature and the fact that it is a relatively robust technology helped
it gain the widespread use it enjoys today.

The idea had been around since the early 1970s that one might
recover the depth profile of thick tissue from the variation in the
time it takes for light to return from different depths. But the speed
of light is so high that this is not practical to measure, and the early
pioneers of OCT seized instead on low coherence interferometry.
The historical roots of low coherence interferometry lay in the
observation by Hooke (1664) that interference could be observed
between two reflective surfaces illuminated in white light. This
phenomenon was later analyzed by Isaac Newton, and became
known as “Newton’s rings”. The basic principle of marshalling
low coherence to measure depth profiles in the eye is shown in
Fig. 4A, in the context of what is now called time domain OCT. A
light source is used that has very short coherence length, ideally
small compared with the retinal layers one wishes to distinguish.
This short coherence length implies that when the beam is split
in two by a fiber coupler and one beam is directed at the retina
and the second one to a reference mirror, the two beams, when
brought back together, can only interfere if the two beams traveled
the same optical path length to within the coherence length of the
source. Shifting the axial position of the reference mirror changes
the depth in the retina where interference can be produced, and
the magnitude of the interference signal at that depth increases
with the intensity of the reflection. By measuring the magnitude
of the interference signal as a function of the axial position of the
reference mirror, it is possible to identify the light reflected from
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Fig. 4. Three methods that use low coherence interferometry to acquire high resolution depth information from the retina. (A) Time domain OCT. (B) Spectral or Fourier

domain OCT. (C) Swept source OCT. See text for details. Adapted from Fujimoto (2003).

different depths, without the need to measure the transit time of
light. The earliest application of these ideas to the eye produced
a depth profile along a line passing through a single point on the
retina, allowing, for example, very precise measurements of the ax-
ial length of the eye (e.g. Fercher et al., 1988). By transverse scan-
ning, sequentially acquiring axial depth profiles along a linear
series of locations across the retina, one can construct a two-
dimensional tomograph or retinal cross-section in the living eye.
OCT is able to detect much weaker signals from the retina than
conventional fundus imaging because it takes advantage of the in-

creased gain provided by heterodyne detection. In heterodyne
detection, the amplitude of the interference signal is proportional
to the product of the amplitudes of the two interfering beams so
that the use of a large amplitude reference beam amplifies the
weak interference signal. Huang and colleagues, working in Jim
Fujimoto’s laboratory at MIT, made the first in vitro optical coher-
ence tomograph of the retina in 1991 (Huang et al., 1991). Fercher’s
group made the first in vivo optical coherence tomography of the
optic disc in 1993 (Fercher, Hitzenberger, Drexler, Kamp, & Satt-
mann, 1993).
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The next major step in the evolution of OCT was to improve the
axial resolution even further. The first systems had a fairly long
coherence length, which provided a theoretical resolution of about
10-15 pum. In 1999, Drexler, working in Jim Fujimoto’s lab, pio-
neered the use of broader band, shorter coherence length, sources
that could in principle achieve an axial resolution of 3 pum in the
eye, two orders of magnitude better than the confocal SLO (Drexler
et al.,, 1999). Though the resolution improvement is limited to a
single spatial dimension, ultrahigh resolution OCT could in theory
produce a point spread function in the axial dimension smaller
than the size of many cells in the retina.

A major limitation of time-domain OCT is the speed at which
the retina can be scanned. This is especially problematic because
large movements of the eyes could occur even with the fastest
scanning speeds available. The main limitation on the speed of im-
age acquisition in time domain OCT is the time required to shift the
optical path length in the reference arm of the interferometer,
either through mechanical displacement of the mirror or a variable
delay line. Avoiding this delay, Fercher introduced the basic princi-
ple of spectral domain OCT (Fercher, Hitzenberger, Kamp & El-Zai-
at, 1995). A typical layout for a spectral domain OCT is shown in
Fig. 4B. It is similar to the time domain OCT with the exception
of the detection arm of the system, which contains a spectrometer
instead of a simple light detector. The spectrometer consists of a
diffraction grating and a one-dimensional CCD that can acquire
the entire spectrum of the light returning from a single retinal
location in parallel. Spectral domain OCT obviates the need for
scanning in the reference arm to acquire the depth profile at each
retinal location. Instead, the reflectance at each depth is obtained
from variations in the pattern of interference across the spectrum
of the reflected light. The spectrum contains depth information be-
cause the light reflected from a single depth at one retinal location
will generally produce a sinusoidal variation in the interference
pattern across wavelength. The amplitude of this sinusoid is pro-
portional to the square root of the amplitude of the electric field re-
flected at that point. The frequency of this sinusoid increases as the
optical path length difference between the reference and sample
increases. Therefore, the Fourier transform of the spectrum of the
light returning from reflection will reveal the amount of light re-
flected at each axial depth at that retinal location. The first demon-
stration of its application in retinal imaging was published in 2002
(Wojtkowski, Kowalczyk, Leitgeb, & Fercher, 2002; Wojtkowski,
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Leitgeb, Kowalczyk, Bajraszewski, & Fercher, 2002). The introduc-
tion of spectral domain OCT (sometimes called Fourier or fre-
quency domain OCT) increased the sensitivity of OCT by roughly
two orders of magnitude. The reason for this improvement is be-
cause, in time-domain OCT, at any instant, all the light is lost that
is illuminating other retinal layers than the one that happens to be
interfering with the reference arm. In spectral domain OCT, at any
instant, light from all retinal layers contribute to defining the axial
profile. An example of a spectral domain OCT scan from Werner's
group at UC, Davis is shown in Fig. 5.

Swept source OCT is a related method that also generates the
depth profile through spectral information. In swept source OCT,
the wavelength of the light source is rapidly swept to obtain the
necessary spectral information to compute the depth profile at
each retinal location (Choma, Sarunic, Yang, & Izatt, 2003). The lay-
out of a swept source OCT system is shown in Fig. 4C. Many groups
are now acquiring three-dimensional volumes of the retina with
these methods (e.g. Drexler & Fujimoto, 2008). These evolving
technologies have revolutionized retinal imaging in ophthalmol-
ogy and two decades after the introduction of the first time domain
OCT systems, they are ubiquitous tools in the eye clinic. Though
OCT offers a 100-fold improvement in axial resolution over the
confocal SLO and is even better still in that dimension than the
conventional fundus camera, it does not improve provide any res-
olution gains in either of the other two lateral spatial dimensions.
Fortunately, a way to improve lateral resolution was also under
development in the 1990s.

5. Improvements in lateral resolution through adaptive optics

The quality of fundus cameras is typically good enough that the
lateral resolution is limited not by the instrument but by the opti-
cal quality of the human eye. The limitations in eyes with relatively
good optics include diffraction by the eye’s pupil and aberrations,
with light scatter becoming a significant source of blur in older
eyes and young eyes with unusually cloudy optics. The effects of
diffraction and aberrations on the eye’s point spread function are
illustrated in Fig. 6. When both diffraction and aberrations are
present, the optimum pupil diameter is in the range of 2-3 mm.
If diffraction were the only source of image blur, then for micro-
scopic imaging there would be a clear advantage of using the larg-

Choriocapillaris
and Choroid

Fig. 5. Fourier-domain optical coherence tomography (FD-OCT) B-scan of the fovea from a normal 34-year-old volunteer acquired with a FD-OCT instrument scanning 5 mm
laterally. The instrument was built by Jack Werner’s group at UC, Davis. Abbreviations: FoH, fibers of Henle; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner
plexiform layer; ISL, inner segment layer; NFL, nerve fiber layer; ONL, outer nuclear layer; OPL, outer plexiform layer; OSL, outer segment layer; RPE, retinal pigment
epithelium, choriocapillaris and choroid. The outer limiting membrane (OLM; sometimes called external limiting membrane (ELM)), connecting cilia (CC; sometimes called
inner/outer segment junction), Verhoeff's membrane (VM; sometimes called cone photoreceptor outer segment tips (COST)) and rod photoreceptor outer segment tips (ROST)
may also be seen. ROST and RPE appear as one layer in the fovea but are visible as separate layers in the periphery. From Werner, Keltner, Zawadzki, and Choi (2011).
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Fig. 6. The point spread function (PSF) for a diffraction-limited eye and a normal
eye at two different pupil diameters. The PSF corresponds to the light distribution
on the retina produced by a point source of light infinitely distant from the eye. For
the hypothetical diffraction-limited eye, the PSF diameter decreases in inverse
proportion to the pupil diameter such that large pupils produce the best image
quality. However, in the typical human eye, aberrations increase with increasing
pupil size, eliminating the benefit of escaping diffraction at the largest pupils. The
goal of AO is to correct the aberrations to produce the PSF of a diffraction-limited
eye with a large pupil. From Yin and Williams (2011).

est pupil possible. In theory, retinal imaging without any aberra-
tions and a pupil fully dilated to 8 mm could produce a point
spread function with a full width at half height as small as
1.4 pm in the middle of the visible spectrum. Unfortunately, in
the typical eye, aberrations corrupt the point spread function at
large pupil diameters, removing most of the benefit of escaping dif-
fraction. Full aberration correction with an 8 mm pupil could pro-
vide a 3.4-fold gain in lateral resolution over that obtained with a
2.5 mm entrance pupil. This benefit applies to two spatial dimen-
sions, reducing the 3-d volume of the PSF by a factor of ~10. This
benefit in lateral resolution does not include the potential benefit
in axial resolution that can be achieved by correcting aberrations
to be discussed later.

In conventional fundus cameras designed for wide field clinical
imaging, no attention is usually paid to correcting aberrations other
than defocus. But if the goal is to maximize the lateral resolution of
microscopes for imaging the living retina at a cellular spatial scale, it
is necessary to compensate not only for defocus, but also astigma-
tism and a host of other aberrations that we now refer to as higher
order aberrations. A quarter of a century ago, higher order aberra-
tions were collectively called “irregular astigmatism”. Only a few
devoted disciples of physiological optics had succeeded in charac-
terizing some of the individual aberrations that make up irregular
astigmatism, and because no method existed to correct them, the
importance of their work went largely unrecognized. Smirnov
(1961) used a subjective vernier task to measure the third- and
fourth-order aberrations of the eye. He lamented the lengthy calcu-
lations required to compute the wave aberration and stated that it
was unlikely this method would have practical significance, not
foreseeing the rapid increase in computing speed that would make
it possible within 40 years to measure and compute the eye’s wave
aberration in a few tens of milliseconds. Walsh, Charman, and How-
land (1984) demonstrated the first objective method to measure the
eye’s wave aberration. This was a significant breakthrough in the
history of aberration measurement, but the method was never
widely adopted because it was never automated.

Liang, working as a graduate student in Josef Bille’s laboratory
at the University of Heidelberg demonstrated that it was possible
to adapt for use in the eye the Shack-Hartmann wavefront sensor
that is widely used in astronomical adaptive optics (Liang et al.,
1994). Liang joined my laboratory at the University of Rochester
to develop a high-resolution wavefront sensor that provided a
more complete description of the eye’s wave aberration, measuring
up to 10 radial Zernike orders (Liang & Williams, 1997). The

Shack-Hartmann wavefront sensor was eventually automated in
a collaborative effort between Artal’s group at the University of
Murcia and my group at Rochester (Hofer, Artal, Singer, Aragon,
& Williams, 2001; Hofer, Chen, et al., 2001). The automation of
wavefront sensing and the promise of correcting higher order aber-
rations with laser refractive surgery lead to rapid commercializa-
tion. Even though some of the eye’s higher order aberrations had
been measured in various clever ways for more than 40 years, their
significance for vision correction and high resolution retinal
imaging was not widely recognized until adaptive optics was used
successfully to correct them.

6. Early adaptive optics systems for the eye

The wave aberration is unique in every eye and it is dynamic
over time, largely due to fluctuations in focus (Hofer, Artal, et al.,
2001; Hofer, Chen, et al., 2001). Therefore, the correction of the
wave aberration requires an optical element that could assume
an essentially infinite number of possible shapes over time. Fortu-
nately, just such a technology had been developed to solve a re-
lated problem in the field of astronomy. The idea of adaptive
optics was first introduced by Babcock (1953), who suggested that
an adaptive optical element could remove the blur in stellar images
from the time-varying aberrations produced by the turbulent
atmosphere. Babcock was unable to implement his idea at the time
because the technology did not exist to measure and correct the
aberrations he could see dancing just out of reach in the pupil
plane of his telescope. Hardy and his colleagues succeeded in the
first empirical demonstration of adaptive optics in astronomy
(Hardy, Lefebvre, & Koliopoulos, 1977). Now adaptive optics is
commonplace among the best ground-based telescopes around
the world.

In 1989, Dreher, working in Joseph Bille’s laboratory at the Uni-
versity of Heidelberg, used a deformable mirror to improve retinal
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Light Delivery
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flash T

Contrast Sensitivity
or Retinal Imaging

‘ Wavefront Sensing

Fig. 7. Optical layout of the first adaptive optics fundus camera that could correct
higher order aberrations of the human eye. Wave-front sensing and adaptive
compensation. The eye focused a collimated laser beam onto the retina. The light
reflected from the retina formed an aberrated wave front at the pupil. The distorted
wave front was measured by a Hartmann-Shack wave-front sensor. A deformable
mirror, conjugate with the pupil, compensated for the eye’s wave aberration. After
compensation was achieved, psychophysical or retinal imaging experiments could
be performed with a 6-mm pupil. Retinal imaging. A krypton flash lamp delivered a
4-ms flash, illuminating a retinal disk 1° in diameter. A scientific-grade CCD
acquired images of the retina. From Liang et al. (1997).
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images in a scanning laser ophthalmoscope (Dreher, Bille, & Wein-
reb, 1989), correcting the astigmatism in one subject’s eye based
on a conventional spectacle prescription. At the time, Bille’s group
had not yet developed the Shack-Hartmann wavefront sensor, so
that they were not able to correct additional aberrations beyond
astigmatism.

Liang, Miller, and I constructed the first closed-loop adaptive
optics system that could correct higher order aberrations in the
eye, shown in Fig. 7 (Liang, Williams, & Miller, 1997). The system
consisted of a Shack-Hartmann wavefront sensor to measure the
eye’s aberrations, a 37 actuator deformable mirror to correct the
aberrations, and a flash-illuminated fundus camera to acquire a
retinal image once the eye’s aberrations had been compensated
through the AO control loop. This first system required about
15 min for each loop of measuring and correcting the wave aberra-
tion, with 4 or 5 loops required to complete the correction. As slow
as this system was, it could produce better images of the cone mo-
saic than Miller had previously obtained without adaptive optics.
Real time, automated adaptive optics systems soon followed
(Fernandez, Iglesias, & Artal, 2001; Hofer, Chen, et al., 2001).

7. Color vision and the trichromatic cone mosaic

Shortly after the AO fundus camera was developed, it was ap-
plied to the problem of imaging the trichromatic organization of
the cone mosaic in the human retina. Though it had been known
for nearly 200 years that human color vision relies on three
channels each tuned to a different part of the visible spectrum

E

§ aremin

(Young, 1801), the arrangement and relative numbers of all three
cone classes in the human eye had not been subject to direct scru-
tiny. Roorda, then a postdoc at the University of Rochester, com-
bined retinal densitometry (Campbell & Rushton, 1955) with
adaptive optics, making it possible to reliably identify the photo-
pigment in single cones throughout large patches of cones near
the foveal center (Roorda, Metha, Lennie, & Williams, 2001; Roorda
& Williams, 1999).

The signal to noise ratio of single images of the cone mosaic was
too poor to reliably identify the pigment contained in each cone.
This made it necessary to add many images. Eye movements that
occurred between frames are typically many times larger than
the diameter of a cone, so that it was necessary to register multiple
frames with cross-correlation before adding them. This approach
turned out to be effective at increasing signal-to-noise ratio
without compromising image quality through registration error.
Putnam et al. (2005) later showed that it is possible to record the
retinal location of a fixation target on discrete trials with an error
at least five times smaller than the diameter of the smallest foveal
cones. These results showed how accurate this process could be,
and that registration error with high quality AO images can be
smaller than the point spread function of the aberration corrected
image. The ability to register and add such high spatial resolution
images turns out to be key to microscopic retinal imaging because
safety limits often preclude delivering all the light in a single
exposure.

The results of Roorda’s analysis, and subsequent measurements
by Hofer, Carroll, Neitz, Neitz, and Williams (2005) showed that

Fig. 8. Images of the cone mosaics of 10 subjects with normal color vision, obtained with the combined methods of adaptive optics imaging and retinal densitometry. The
images are false colored so that blue, green, and red are used to represent the S, M, and L cones respectively. (The true colors of these cones are yellow, purple, and bluish-
purple.) The mosaics illustrate the enormous variability in L/M cone ratio. The L/M cone ratios are A, 0.37,B, 1.11,C, 1.14,D, 1.24,E, 1.77,F, 1.88, G, 2.32, H, 2.36, 1, 2.46, ], 3.67,
K, 3.90, L, 16.54. The proportion of S cones is relatively constant across eyes, ranging from 3.9% to 6.6% of the total population. Images were taken either 1° or 1.25° from the
foveal center. For two of the 10 subjects, two different retinal locations are shown. Panels D and E show images from nasal and temporal retinas respectively for one subject; J
and K show images from nasal and temporal retinas for another subject. Images C, J, and K are from Roorda and Williams (1999). All other images are from Hofer et al. (2005).

From Williams and Hofer (2003).
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Fig. 9. AO reveals cone mosaics in two kinds of color blindness. (a) Dichromat with cone mosaic indistinguishable from a normal trichromat. (b) Dichromat with M pigment
mutation showing dark regions where cones may be damaged or lost; despite the disruption in the cone mosaic this person has excellent spatial vision. Scale is identical for

each panel; scale bar is 50 um. From Carroll et al. (2004).

the distribution of the different photopigments in foveal cones is
essentially random and revealed directly a very large (40-fold) var-
iation in the relative numbers of L and M cones across individuals
(see Fig. 8). One of the most powerful aspects of the ability to char-
acterize the trichromatic mosaic in the living human eye is that it
allows psychophysical measures of visual performance that can be
directly correlated with mosaic organization. For example, it al-
lowed experiments that demonstrate that color experience is not
affected by the relative numbers of L and M cones (Brainard
et al., 2000; Neitz, Carroll, Yamauchi, Neitz, & Williams, 2002).

8. Adaptive optics for vision correction

Adaptive optics corrects the wave aberration simultaneously for
light entering the eye as well as light leaving the eye. This makes it
useful both for vision correction and for retinal imaging. By way of
example, it has also allowed experiments in which flashes smaller
than single photoreceptors are delivered to the cone mosaic to
probe the color experience produced when single cones are stimu-
lated (Hofer, Singer, & Williams, 2005). These experiments showed
that cones containing the same photopigment do not always gen-
erate the same color appearance, supporting the view that color
appearance depends also on the identities of nearby cones
(Brainard, Williams, & Hofer, 2008).

The use of adaptive optics for vision correction has expanded in
many exciting new directions, not only for studying vision when
aberrations are corrected (e.g. Artal, Manzanera, Piers, & Weeber,
2010; Atchison, Guo, Charman, & Fisher, 2009; Atchison, Guo, &
Fisher, 2009; Dalimier & Dainty, 2008; Dalimier, Dainty, & Barbur,
2008; de Gracia et al., 2010; Elliott et al., 2009; Guo & Atchison,
2010; Gupta, Guo, Atchison, & Zele, 2010; Li, Xiong, Li, et al,,
2009; Li, Xiong, Wang, et al., 2009; Liang et al., 1997; Lundstrom
et al., 2007; Marcos, Sawides, Gambra, & Dorronsoro, 2008; Perez,
Manzanera, & Artal, 2009; Rocha, Vabre, Chateau, & Krueger, 2010;
Rocha, Vabre, Harms, Chateau, & Krueger, 2007; Rossi & Roorda,
2010; Rossi, Weiser, Tarrant, & Roorda, 2007; Rouger, Benard, &
Legras, 2009; Sawides, Gambra, Pascual, Dorronsoro, & Marcos,
2010; Williams et al., 2000; Yoon & Williams, 2002). Adaptive
optics can be used to study visual performance by generating spe-
cific novel aberration patterns in the eye (e.g. Chen, Singer, Guirao,
Porter, & Williams, 2005). This use of adaptive optics has revealed
that the nervous system has adapted to the specific pattern of
aberrations in the eye (Artal et al., 2003; Atchison & Guo, 2010;
Chen, Artal, Gutierrez, & Williams, 2007; Sabesan & Yoon, 2010).
AO vision correction systems have also been used to study other

aspects of vision such as motion processing (Raghunandan, Frasier,
Poonja, Roorda, & Stevenson, 2008), accommodation (Chen, Kruger,
Hofer, Singer, & Williams, 2006; Fernandez & Artal, 2005;
Hampson, Chin, & Mallen, 2010), and binocular vision (Fernandez,
Prieto, & Artal, 2010). AO may ultimately provide a rapid and
highly reliable alternative to the subjective phoropter used to
refract the eye.

9. Genetics and the cone mosaic

Another advantage of in vivo resolution of the human photore-
ceptor mosaic is that it made it vastly simpler to determine how
polymorphisms in the genes that code for the photoreceptors influ-
ence the mosaic that is ultimately formed. Carroll and colleagues
(Carroll, Neitz, Hofer, Neitz, & Williams, 2004), working initially
on the flood-illuminated AO ophthalmoscope at Rochester discov-
ered a new cause for color blindness in which a mutation in the
gene for one of the three cone photopigments results in a mosaic
of cones that shows patchy loss (see Fig. 9). Interestingly, despite
the loss of nearly 1/3 of the patient’s foveal cones, his visual acuity
is normal (20/15), indicating that adaptive optics imaging can de-
tect retinal degeneration well before conventional clinical tests.
Carroll and colleagues have gone onto describe the mosaic pheno-
type of an impressive number of different polymorphisms (Baraas
et al., 2007; Carroll et al.,, 2009, 2010; Wagner-Schuman et al.,
2010).

10. Adaptive optics scanning laser ophthalmoscopy

The adaptive optics fundus camera built at the University of
Rochester had a greatly improved lateral resolution over cameras
without AO but it had effectively no axial sectioning, which meant
that scattered light throughout the eye and instrument could re-
duce image contrast (see Fig. 3). But even the confocal SLOs of
the 1980s had a axial sectioning capable of removing corneal and
lenticular scatter though, at about ~300 pm, not enough to provide
much useful optical sectioning of the retina.

Roorda, then at the University of Houston, and his colleagues
built the first instrument that combined the benefits of adaptive
optics with those of the confocal SLO (Roorda et al., 2002). The
optical layout of an AOSLO is shown in Fig. 10. This new instru-
ment had a number of important advantages. First, adaptive op-
tics increased confocality by increasing the quality of the retinal
image at the pinhole, allowing the use of smaller pinholes and
therefore better rejection of light from unwanted planes away
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Fig. 10. Schematic of an adaptive optics scanning laser ophthalmoscope invented by Austin Roorda. Key: CL, collimating lens; AOM, acousto-optic modulator; EP, entrance
pupil; BS1, beamsplitter 1; DM, deformable mirror; HS, horizontal scanning mirror; VS, vertical scanning mirror; PT, pupil tracking mirror; LA, lenslet array; CP, confocal
pinhole; PMT, photomultiplier tube. Pupil and retinal conjugates are labeled p and r, respectively. Mirrors and lenses are labeled M# and L# along the optical path. Telescope
lens/mirror-pairs for relaying the pupil through the path are L1-L2, L3-L4, M1-M2, M3-M4, M5-M6, and M7-M8. From Miller and Roorda (2009).

from the image plane. The sectioning capability of the AOSLO is
shown in Fig. 11 (see also, Fig. 3). In the most recent AOSLOs
at the University of Rochester, this has improved the axial reso-
lution of the first confocal SLOs by about an order of magnitude.
Second, the AOSLO provides microscopic resolution with a real-
time view of the retina. This has enabled the video-rate imaging
of the motion of individual blood cells in the smallest capillaries
in the retina (Martin & Roorda, 2005, 2009; Zhong, Petrig, Qi, &
Burns, 2008; Zhong, Song, Chui, Petrig, & Burns, in press). Tam,
Martin, and Roorda (2010) has improved the imaging of retinal
vasculature without the need for fluorescein by using motion
contrast to identify vessels, setting the stage for automated mea-
surements of leukocyte velocity (Tam, Tiruveedhula, & Roorda,
2011). In vivo studies of blood flow in these smallest of vessels
may provide valuable information about early vascular changes
in diseases such as diabetic retinopathy.

The clinical utility of AO imaging is only now beginning to be
explored (Baraas et al., 2007; Bhatt, Rha, Carroll, & Stepien, 2010;
Carroll et al., 2004, 2009, 2010; Chen, Roorda, & Duncan, 2010;
Choi et al., 2006; Hammer et al., 2008; McAllister et al., 2010; Tal-
cott et al., 2010; Wolfing, Chung, Carroll, Roorda, & Williams, 2006;
Yoon et al., 2009). An exciting recent paper has also shown the po-
tential of AO in drug development (Talcott et al., 2011). They have
shown that the AOSLO can detect photoreceptor rescue by a drug,
CNTF, in retinitis pigmentosa patients. The value of AO is high-
lighted by the fact that other standard clinical measures such as vi-
sual acuity failed to show a benefit. It seems likely that the
microscopic views of cells provided by AO will find their place in

the clinic as an especially sensitive indicator of the progression
of retinal disease.

In scanning systems such as the SLO, eye movements produce
distortion within individual frames as well as translation between
frames. The AOSLO is also subject to these distortions, but the in-
creased resolution AO affords allows us to resolve the effects of
eye movements at a finer spatial scale. Roorda and collaborators
(Stevenson & Roorda, 2005; Vogel, Arathorn, Roorda, & Parker,
2006) have shown that they can use the warping that occurs in
individual frames and between frames in their AOSLO to recover
what is probably the most accurate measurement of eye motion
ever made. Methods to track the retina with an accuracy approach-
ing the dimensions of single cells will become increasingly impor-
tant in obtaining enough signal to distinguish subtle changes in
retinal cells. Stabilization of the field of view would be especially
useful in situations such as microsurgery performed with a micro-
scope equipped with adaptive optics. It is now possible to perform
these computations in real time, allowing real-time stabilization of
the retinal image for targeted delivery of visual stimuli to the ret-
ina (Arathorn et al., 2007; Yang, Arathorn, Tiruveedhula, Vogel, &
Roorda, 2010). An alternative approach, under development by
Ferguson and Hammer at Physical Sciences Corporation and Burns
at Indiana University, is to couple a separate eye tracker to an
adaptive optics scanning laser ophthalmoscope for the purposes
of image stabilization (Burns, Tumbar, Elsner, Ferguson, & Ham-
mer, 2007; Hammer et al., 2006). Hybrid systems that combine
hardware tracking and software stabilization are also under
development.
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Fig. 11. Optical sectioning of the retinal layers. In the top panel, the AOSLO is
focused at the external limiting membrane and shows the mosaic of cone
photoreceptors. The middle panel is an optical section of the inner retina, showing
light scattered from the blood vessels. The bottom panel is an optical section with
the focus on the surface of the retina, showing the striation of the nerve fiber
bundles. The image is from a location about 4° inferior to the foveal center. From
Roorda (2010).
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Fig. 12. Mapping single cone cell inputs to the receptive fields of LGN cells recorded
with a microelectrode in the monkey. Upper panel: color fundus photograph of
macaque retina with an AOSLO montage overlay. The red dot indicates the location
of the receptive field that is shown in the two lower panels. The lower panel shows
the exact locations of the test areas. The central plot shows the probability that each
stimulus flash will produce a neural spike (adapted from Sincich et al. (2009)). From
Roorda (2010).

11. Single unit physiology and single cone inputs to LGN
receptive fields

These approaches may herald a new generation of psychophys-
ical experiments in which the location of a stimulus on the retinal
cone mosaic can be controlled in real time with an error less than
the diameter of a single cone. Indeed, Sincich and colleagues
(Sincich, Zhang, Tiruveedhula, Horton, & Roorda, 2009) have shown
that the AOSLO can be combined with single unit electrical record-
ings of spike trains in primate lateral geniculate nucleus. Remark-
ably, as shown in Fig. 12, through exquisite control a point source
delivered with AO despite eye movements, they have been able to
target and stimulate single cones, recording the responses of LGN
cells to light arriving in single cones. This method will ultimately
allow the microdissection of the cone inputs to receptive fields of
cells at many stages in the visual pathway in the intact organism.

12. Imaging the smallest photoreceptors

The performance of adaptive optics systems is steadily improv-
ing due to the use of better designs that minimize instrument
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Fig. 13. High-resolution images of the smallest photoreceptors obtained with the new Rochester AOSLO. (a) The complete foveal cone mosaic. (b) The complete peripheral
photoreceptor mosaic showing both rods and cones, imaged at 101 temporal and 11 inferior. Scale bars are 20 um. From Rossi et al. (2011).

aberrations (Dubra & Sulai, in press; Gomez-Vieyra, Dubra, Mala-
cara-Hernandez, & Williams, 2009), the use of smaller confocal
pinholes, and improvements in registration algorithms. Fig. 13a
shows an image obtained with Alfredo Dubra’s AOSLO at the Uni-
versity of Rochester, in which the smallest cones at the foveal cen-
ter can be resolved. Building on the earlier work of Carroll, Choi,
and Williams (2008), Doble et al. (2011), and Dubra et al. (in press)
can now obtain clear images of single rods in the living human eye
(Fig. 13b). Rods are much more difficult than cones to resolve be-
cause of their small diameter (~2 pm) and broad angular tuning,
which sends less light back through the pupil where it can be col-
lected for imaging. The ability to image rods routinely would be
valuable in assessing the progression of retinal degeneration,
which often begins with an assault on the rods.

13. High resolution fluorescence imaging

The introduction of fluorescein angiography revealed the enor-
mous potential of fluorescence retinal imaging for improving the
contrast of specific retinal features. The first use of fluorescence
in the living human eye was in 1960, when MacLeand and Maume-
nee used a slit lamp to directly view intravenously-injected fluo-
rescein in the eye (MacLean & Maumenee, 1960). The following
year, Novotny and Alvis (1961) combined this method with a fun-
dus camera, collecting the first fluorescein angiograms. Indocya-
nine green angiography, which provides an enhanced view of
blood flow in the choroids was introduced in 1969 (David, 1969).

A quarter century ago, these were essentially the only fluorescence
methods available in the living eye, but the use of fluorescence has
since expanded. An especially exciting example of the resurgence
in interest in fluorescence is the recent demonstration of in vivo
fluorescence SLO imaging of apoptosis of single primate ganglion
cells stained with annexin-5 (Cordeiro, Guo, Luong, et al., 2004).
It may someday be possible to track cells on the path to apoptosis
in humans with glaucoma. The high contrast provided by fluores-
cence when only occasional cells are labeled plus the relatively
large size of ganglion cells make it easy to resolve these cells with-
out resorting to high resolution methods. Surprisingly, the mouse
eye, with a numerical aperture twice that of the human, has a the-
oretical PSF volume that is 16 times smaller than that of the dif-
fraction-limited human eye. Indeed excellent images of ganglion
cells have been obtained in the mouse retina without the need
for adaptive optics (Leung et al., 2008; Pacques et al., 2006; Seelig-
er et al., 2005; Walsh & Quigley, 2008). Melissa Geng at the Univer-
sity of Rochester has recently constructed an AOSLO specifically for
the mouse eye, having overcome difficulties in wavefront sensing
the mouse optics caused by reflections from multiple retinal layers
(Geng et al., 2011). This new instrument promises to reveal subcel-
lular features in the mouse retina never before accessible in the liv-
ing eye.

Another major new direction in fluorescence imaging began in
1995 when von Ruckmann introduced lipofuscin autofluorescence
imaging (von Ruckmann, Fitzke, & Bird, 1995). Lipofuscin is com-
prised of a number of compounds that are by-products of the vi-
sual cycle of photopigment bleaching and regeneration. They

Fig. 14. Retinal pigment epithelium and individual lipofuscin granules revealed in FAOSLO. (a) Individual RPE cells imaged using FAOSLO in macaque. Scale bar is 100 pum. (b)
Outlined region from a showing individual lipofuscin granules; distance between arrowheads is 2 pum, on the order of the size expected for RPE granules. From Rossi et al.

(2011).
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accumulate throughout life and are autofluorescent, making it pos-
sible to image the retinal pigment epithelium (RPE) for the first
time in the living eye. The retinal pigment epithelium lies just be-
hind the photoreceptors and is critically important in servicing
them. RPE cells are replete with melanin granules, one role of
which is to absorb light that would otherwise scatter and compro-
mise the contrast of the retinal image. But a consequence of this
protective role of melanin is that the RPE cells have relatively
low contrast and are difficult to image with reflected light in the
living eye (but see Roorda, Zhang, & Duncan, 2007). Autofluores-
cence imaging was quickly incorporated in commercial instru-
ments, allowing an entirely new view of retinal diseases that
compromise the RPE layer.

14. Imaging RPE cells and ganglion cells with a fluorescence
AOSLO

Commercial autofluorescence imaging is achieved with flood-
illuminated fundus cameras or confocal SLOs equipped with the
appropriate blocking filters. Building on the AOSLO technology
introduced by Roorda and colleagues, Gray, Morgan and others at
the University of Rochester added fluorescence imaging capabili-
ties, making it possible to image single RPE cells in the living pri-
mate eye (see Fig. 14). The FAOSLO has provided the first in vivo
images of the RPE cell mosaic in the normal primate eye (Gray et
al., 2006; Morgan, Dubra, Wolfe, Merigan, & Williams, 2009), tak-
ing advantage of the resolution provided by adaptive optics and
the AF of lipofuscin inside RPE cells. In a typical frame, the signal
measured by the PMT corresponds to only 0.2 photons/pixel, so
over a thousand frames are typically averaged to generate an
image. Eye motion between successive frames requires image
registration before averaging, but the images are too dim to self-
register. To overcome this problem, the FAOSLO simultaneously
records a high signal-noise-ratio (SNR) movie of the photorecep-
tors using reflectance imaging in the near infrared and a low SNR
fluorescence movie of the RPE in the visible. Since the two movies
share the same retinal motion, cross-correlation of cone frames can
be used to compute the eye motion correction for the dimmer RPE
frames. Discrete RPE cells can be seen because the cell nucleus does
not contain lipofuscin and appears dark, whereas the cytoplasm
surrounding the nucleus appears bright due to lipofuscin AF.

As shown in Fig. 15, Gray has also shown that it is possible to
image ganglion cells including subcellular features such as their
dendrites (Gray et al., 2008). The rapid development of fluorescent
probes in biology and medicine as well as new methods, such as
viral-based methods, to deliver these probes promises to revolu-
tionize retinal imaging. It may soon be possible to image stimulus
dependent changes in ganglion cell fluorescence through geneti-
cally encoded calcium indicators in the living eye (see Borghuis
et al. (2011) for an in vitro demonstration of this approach), which

could ultimately clarify why the retina requires 17 or more distinct
ganglion cell pathways to convey the retinal image to the brain. To
date, in vivo cellular microscopic imaging methods are largely con-
fined to animal imaging, and a major hurdle for the future is to find
noninvasive methods to exploit these fluorophores in human reti-
nal imaging.

15. A point spread function equal to 3 pm in all three spatial
dimensions

It was recognized soon after adaptive optics was first demon-
strated in the eye that its high lateral resolution would comple-
ment the ultrahigh axial resolution of OCT. By combining the two
technologies in a single instrument, the point spread function
can be approximately 3 pum (see Fig. 3). Miller et al. (2011) has re-
cently reviewed the current state of AO-OCT. Miller and his col-
leagues were the first to combine AO and an en face coherence
gated camera, achieving an axial resolution of 14 um and a lateral
resolution of 3-5 um (Miller, Qu, Jonnal, & Thorn, 2003). Shortly
thereafter, Artal’s group at the University of Murcia, Spain and
Drexler’s group at the University of Vienna collaborated to produce
the first generation AO UHR OCT using time domain detection
(Hermann et al., 2004). Since then there has been a striking prolif-
eration of AO-OCT instruments based on many different types of
OCT systems including time domain en face scanning (Merino,
Dainty, Bradu, & Podoleanu, 2006; Pircher, Zawadzki, Evans,
Werner, & Hitzenberger, 2008), high resolution spectral domain
OCT (Bigelow et al., 2007; Zawadzki, Choi, Jones, Oliver, & Werner,
2007; Zawadzki et al., 2005; Zhang, Rha, Jonnal, & Miller, 2005;
Zhang et al., 2006), ultra-high spectral domain OCT (Cense et al.,
2009; Fernandez et al., 2005, 2008; Kocaoglu et al., 2011;Torti
et al., 2009; Zawadzki et al., 2008), and swept source OCT (Mujat
et al,, 2010).

There are a number of challenges in the successful marriage of
AO and OCT. One of these is the need to correct the eye’s longitu-
dinal chromatic aberration because of the large spectral bandwidth
required for high resolution OCT. The axial resolution of OCT, as
mentioned earlier, is inversely proportional to the spectral band-
width of the source. Ultrahigh resolution OCT demands sufficiently
large bandwidths that chromatic aberration can significantly re-
duce image quality (Fernandez & Drexler, 2005; Fernandez et al.,
2006). Not only does AO-OCT increase the lateral resolution up to
five times over commercial OCT, by employing a larger pupil, it re-
duces the grain of speckle and increases the sensitivity of the
instrument to light reflected out of the eye. AO-OCT systems have
be used to image a number of retinal structures such as individual
nerve bundles in the nerve fiber layer (Cense et al., 2009; Torti
et al., 2009; Zawadzki et al., 2008), the smallest capillaries around
the rim of the foveal avascular zone, (Hammer et al., 2008; Wang
et al, in press) as well as single cone photoreceptors (Cense

Fig. 15. Fluorescence AOSLO images of primate retinal ganglion cells in vivo. (A-C) Fluorescence AOSLO imaging revealed the morphology of retinal ganglion cells labeled
with fluorophore (rhodamine dextran) in living monkey eye. The transverse resolution of the images is fine enough to resolve the individual dendrites. The fluorophore was
introduced into the ganglion cells through retrograde labeling via injections in the lateral geniculate nucleus (LGN). Scale bar of 50 um in all panels. [Panels A and C,
reproduced from Gray et al. (2008), their Figs. 1 and 5, with permission from Association for Research in Vision and Ophthalmology (Copyright 2008).]
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0.3 mm

Fig. 16. AO-OCT volume acquired over a 1° retinal region located temporal of the fovea, as illustrated by the rectangle in the fundus photograph. The images on the right are
en face views of particular retinal layers extracted from the AO-OCT volume. Retinal layers from top to bottom are: nerve fiber layer (NFL), ganglion cell layer (GCL), outer
plexiform layer (OPL), and outer segment layer of photoreceptors (OS). From Miller et al. (2011).

et al., 2009; Fernandez et al., 2008; Torti et al., 2009; Zawadzki et
al., 2007, 2008; Zhang et al., 2006). It also has been deployed to
study several diseases of the eye such as retinopathy of prematu-
rity (Hammer et al., 2008) and optic neuropathies (Choi, Zawadzki,
Keltner, & Werner, 2008; Choi et al., 2011). Fig. 16 shows an exam-
ples of a 3-D volumetric reconstruction of the retina from an AO-
OCT system.

16. Functional changes in single cones with adaptive optics
interferometry

Miller and his group at Indiana University have undertaken a
series of very elegant experiments on single cones in the living hu-
man eye that beautifully illustrate the scientific potential of adap-
tive optics coupled with low coherence interferometry (Jonnal
et al., 2007, 2010). While AO-OCT usually involves the use of a
scanning engine and a point detector, in some cases it is possible
to combine AO and low coherence interferometry to great advan-
tage in a CCD-based flash-illuminated camera. Their flash-illumi-
nated AO system can acquire images of cones with a high-speed
CCD at rates as high as 192 Hz, ~1000 times faster than the first
flood-illuminated AO ophthalmoscope he helped to build at the
University of Rochester. Conveniently, most of the light reflected
from cones comes from just two layers corresponding to the two
ends of the cone outer segment, at the inner/outer segment junc-
tion and at the junction between the outer segment and the under-
lying RPE cell (see Fig. 17). Miller’s instrument illuminates the cone
mosaic with light of low coherence length but high enough that
light reflected from these two layers within each single cone can

interfere. This clever arrangement converts each cone into a living,
single cell interferometer that is exquisitely sensitive to very subtle
changes in optical path length within the cone. Because this inter-
ferometer, unlike most other OCT methods, has both the reference
and sample beams inside the photoreceptor, it is insensitive to
external vibration and motion that can plague interferometers that
have separate paths for the reference and sample. Miller’s group
has shown for the first time that they can record an optical path
length change within photoreceptors that begins within 5-10 ms
of visual stimulation of a cone. Moreover, as shown in Fig. 18 they
can also record the slow growth of each cone outer segment, which
is only about 100 nm/h! This process of the outer segment renewal
is thought to be critical for the photoreceptor to continue to trans-
duce light into an electrical signal and has never been resolved
in vivo before. Under these specialized conditions, this instrument
has the best depth resolution ever demonstrated in the eye, and
can detect changes in outer segment length as small as 140 nm,
more than 20 times better than the theoretical axial resolution of
ultra-high resolution optical coherence tomography, and more
than a 1000-fold better than the confocal scanning laser
ophthalmoscope.

17. Looking forward

Aside from the satisfaction of basking in our progress, there
seems to be little point in dwelling on the past unless it guides
us in the future. One lesson from dwelling on the past is that the
major improvements in retinal imaging technology throughout
history have sprung from advances in other fields, especially
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Fig. 17. The reflective structure of the retina showing the two bright reflections especially from the cone photoreceptors that are the basis for cellular interferometry. (a) A
diagram depicting the major layers of the neural retina, consisting of the inner limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM), the inner segments (IS) and outer segments
(0S) (which make up the photoreceptor layer), the connecting cilia (CC) and posterior tip (PT) layers (which bound the outer segment), the retinal pigment epithelium (RPE),
and the choroid (CH). (b) An AO-OCT B-scan (log intensity), showing a cross-section of the full retinal thickness, aligned with the layers depicted in (a), and an enlarged view
(linear intensity) of the cone outer segments. While OCT images are typically shown in log intensity, the linear intensity view of the outer segments demonstrates vividly that
the bulk of the cone reflection originates at the CC and PT layers: the bright, patterned reflections at the CC and PT layers are the most visible structures in the linear intensity
image; their peak intensity is more than two orders of magnitude greater than the average intensity of all other layers in the image. Each distinct reflection in the pattern
represents a single cone cell. (c) A model of light propagation through the OS. Two bright reflections (¥, and ¥5) originate from the CC and PT layers, creating a biological
interferometer in the retina that is sensitive to small (<) changes in the outer segment length L whenever the temporal coherence length of the illumination source L€ is

longer than L. From Jonnal et al. (2010).

optics, microscopy, and astronomy. This repeats a pattern that has
pervaded the history of vision science and ophthalmology at least
as early as Kepler, an astronomer who first stated unequivocally in
1604 that the retinal image is inverted. Others from the physical
sciences who have made seminal contributions to vision science
and ophthalmology include Helmholtz, Herschel, Maxwell, New-
ton, Schiener, and Young to name just a few. It is especially inter-
esting how long it takes for significant technical advances in other
fields to migrate into the eye. Confocal imaging, OCT, and adaptive
optics were all introduced in other domains decades before they
were applied to the eye. Part of this delay has to do with the lack
of availability or high cost of the hardware required to implement
new technologies; I will never forget the $1M price tag on the only
deformable mirror available when I first contemplated building an
adaptive optics ophthalmoscope at the University of Rochester. The
demonstration of closed loop adaptive optics for the eye had to
wait until the price tag dropped more than an order of magnitude.
It also takes time to learn a new technology and to implement the
modifications required to make it work in the eye. Another delay
may be the result of scientific provincialism and insularity, a delay
that could be reduced by increased scrutiny of the latest develop-
ments in those fields that have historically fueled ophthalmoscopy.
On the bright side, if history is any guide, the next major break-
through in retinal imaging technology was almost certainly made
decades ago and is just waiting for an enterprising scientist or
engineer to translate it into the eye.

The developers of new technology for retinal imaging may be
unaware that they have something in common with cave divers.
Both enjoy an extreme sport that is more often than not an exercise
in the management of claustrophobia. The cave diver’s view of his
cramped world is of almost entirely impenetrable rock. The devel-
oper of retinal imaging technology is similarly boxed in by the fun-
damental limits of physics and biology. Both grope along, driven by
the hope of discovering a previously-missed passage that, if they
can just squeeze through, will open up into whole new possibilities
for exploration. The history of retinal imaging would suggest, how-
ever, that fundamental limits are rarely if ever fundamental limits
of the natural world. They are almost always fundamental limits
of the conceptual framework we have chosen to think in. The con-
ventional wisdom in 1990 held that axial resolution was fundamen-

tally constrained by geometrical optics and depth of focus. But by
adding the wave properties of light to the conceptual framework,
practitioners of low coherence interferometry in the eye surprised
everyone with a 100-fold, and now recently a 1000-fold, improve-
ment in axial resolution over what was thought possible before.

Though it is true that the speed of light has stood its ground
as a fundamental limit for a very long time, can we really say
with confidence that any limits are truly impenetrable? Progress
in high-resolution retinal imaging demands that we treat these
limits as invitations to overcome them. It may seem that the
spectral transmittance of the cornea and lens would pose a fun-
damental limit on noninvasive optical imaging of the retina, for-
ever preventing us from interrogating molecules that absorb
light only in spectral regions outside the ocular transmittance
window. But as illustrated in Fig. 19, Hunter and colleagues have
recently shown that two-photon imaging can excite autofluores-
cent molecules in the living retina that have excitation spectra in
the near UV, outside the spectral pass band of the eye’s optics
(Hunter et al., 2011). If this method can be made more efficient,
it could open up an entirely new way to study retinal structure
and function in the living eye.

Another major constraint on microscopic retinal imaging is the
maximum permissible light exposure that can be delivered with-
out damaging the eye. This constraint is especially troublesome gi-
ven that the typical yield in reflectance imaging is one photon back
for every 10,000 that enter the pupil. The problem is compounded
by the high magnification that microscopic retinal imaging de-
mands, as well as the low efficiency of many potentially informa-
tive light-tissue interactions. But the dramatic improvements in
eye tracking described earlier make it possible to maintain high
spatial resolution and avoid thermal light damage by harvesting
light at reduced power over longer times. Moreover, compounds
have been discovered that protect the eye from photochemical
light damage (e.g. Maeda et al., 2006), and the application of these
prior to imaging could make it possible to observe faint retinal sig-
nals that are presently invisible. In addition, we are at the begin-
ning of a revolution in the availability of contrast enhancing
fluorophores that one can direct to particular classes of retinal neu-
rons with increasing specificity, functional imaging capabilities,
and improved quantum efficiency.



D.R. Williams / Vision Research 51 (2011) 1379-1396 1393

Cone reflectance
5
JOMO]

Average

Average
spectrum

reflectance
2000 000V CHOCVO OO 00000

0 1 2 3 4 5 0
Time (h)

04 08 12 16 2
Frequency (cyc/hr)

Fig. 18. Cone reflectances and their power spectra (plots offset vertically for ease of
viewing). (a) Reflectance as a function of time of eight sample cones taken from trial
4. Superimposed on each plot is a cosine fit (gray line). The black bar in the upper
left shows 1/10th of the average DC component, I, of cone reflectance. The
oscillation of reflectance in all cones had a visible period of 2.5-3 h, while the
amplitudes and phases appeared to vary randomly. At the bottom is a plot of the
average reflectance of all cones (diamonds), nearly flat (contrast 0.18%), which is
predicted by the model shown in Fig. 1c and Eq. (1). (b) Power spectra of mean-
subtracted cone reflectance traces shown in a, and the average spectrum of all 1626
cones (dark line). Most cones in this trial had a visible peak in the power spectrum
around 0.37 cyc/h, and this peak is visible in the average power spectrum as well.
Similar peaks were seen in power spectra of individual cones, and the average
power spectrum, in all trials in which the long coherence source was used (these
frequencies are summarized in Table 1). When the short coherence source was
used, neither the power spectra of individual cones nor the average power spectrum
showed comparable peaks. From Jonnal et al. (2010).

The diffraction limit is another fundamental barrier that is just
now coming under scrutiny in the domain of retinal microscopy

(Shroff, Fienup, & Williams, 2009; Shroff, Fienup, & Williams,
2010). Abbe (1837) showed nearly 140 years ago that the wave
nature of light poses a fundamental barrier on the resolution of
an optical system with a fixed numerical aperture. If the diffraction
limit could be surpassed, then a new leap to smaller spatial scales
in retinal imaging would be enabled, scales that in principle could
be molecular. Most scientists and engineers long ago resigned
themselves to the notion that the diffraction limit was so funda-
mental to the nature of light that it would never be surpassed in
any practical imaging system. Remarkably, the field of microscopy
has already seen the diffraction barrier fall, not once but many
times, thanks to an array of new techniques including structured
illumination (Gustafsson, 1999), stimulated emission depletion
(Hell & Wichmann, 1994), and photoactivation localization micros-
copy (Betzig et al., 2006). None of these methods has yet been ap-
plied successfully to retinal imaging, and certainly the challenges
of doing so are formidable. But the history of the past quarter cen-
tury strongly suggests that new routes around fundamental barri-
ers will be found, allowing us to acquire ever more information
from the living retina.
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