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Abstract . When the deterministic aberrations are known in an optical system,
traditional de-blurring methods are effective . However, when the aberrations are
difficult to quantify, such as telescope aberrations or the aberrations in the human
eye, other methods are needed . One potential method for de-blurring an image
that is formed from a system with unknown aberrations is the bispectral imaging
method. It is a promising way to remove the effects of deterministic aberrations
when random aberrations are present or artificially introduced into the system .
Through computer simulations, we have found the optimal amount of random
aberrations to have present in a system containing deterministic aberrations . This
amount optimizes the image quality of the reconstruction at high light levels using
100 statistically independent aberrated images of the object . Defocus and several
third-order aberrations were considered in the isoplanatic case . The performance
of this method was characterized by reconstructing a point source and computing
its Strehl ratio . These results are currently being used to incorporate the
bispectral imaging method as part of a non-invasive technique to reconstruct
high-resolution images of the back of the eye in human subjects .

1. Introduction
There is currently a wide variety of methods that remove the effect of

deterministic aberrations in imaging systems [1-8] . Deterministic aberrations are
aberrations that remain fixed in time ; they characterize the performance of the optical
system and, for example, include such third-order aberrations as coma, astigmatism,
and spherical aberration . When the deterministic aberrations are known, traditional
de-blurring methods, such as the Wiener filter [1], aberration compensating filters
[2], and spatial filters [3] can be effective . However, when the aberrations are difficult
to quantify, such as telescope aberrations or the aberrations in the human eye, other
methods are needed .

One potential method for de-blurring an image that is formed from a system with
unknown aberrations is the bispectral imaging method . This image recovery
technique reconstructs the object's Fourier phase using a sequence of statistically
independent aberrated images of the spatially incoherent object . For an optical
system with only deterministic aberrations, a sequence of statistically independent
images cannot be generated . To obtain such a sequence, a noise source, which
induces time-varying fluctuations on the object's wavefront, must be present or

t Present address : Department of Physics, Ajou University, Suwon, Korea .

0950-0340/95 $1000 © 1995 Taylor & Francis Ltd.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f R
oc

he
st

er
] A

t: 
15

:4
8 

4 
O

ct
ob

er
 2

00
7 

1524

	

D. T. Miller et al .

Object Pupil Gaussian

Random
Aberrations

Image

I

	

H

	

A

I L2

	

L3

r
Deterministic
Aberrations

Figure 1 . Illustration of how random aberrations are artificially introduced into the original
system containing only deterministic aberrations . The system's pupil, which contains
the deterministic aberrations, is imaged on to the Gaussian diffuser .

artificially introduced into the system's pupil . Such a noise source will be referred
to in this paper as random aberrations . As will be shown, the random aberrations
alter the effect the deterministic aberrations have on the bispectral transfer function
of the system . For illustrative purposes, figure 1 depicts how random aberrations can
be artifically introduced into the pupil of a system containing only deterministic
aberrations .

The bispectral imaging technique has been found to be promising in removing
the effects of deterministic aberrations when random aberrations are added to the
system. This seemingly contradictory result (adding random aberrations to
eliminate deterministic aberrations) can be understood as follows : the bispectral
imaging method consists of computing a third-order moment of Fourier images
containing three shifted versions of the same optical transfer function . The bispectral
transfer function therefore contains the multiplication of six pupil functions (two
pupil functions from each optical transfer function) whose relative shifts and
orientations with respect to each other correspond to particular spatial frequencies
in the bispectral transfer function . The six pupil functions are identical except that
three are complex conjugates of the other three . When the shift between any two of
the six pupil functions is zero, which corresponds to a complete overlap of the two
pupils, and the two pupils are complex conjugates of each other, all points in the
first pupil function are multiplied by their corresponding identical points in the
second pupil function . Because the multiplied points are identical and complex
conjugates, the deterministic aberrations in the two pupil functions completely
cancel each other, and therefore the deterministic aberrations in these two pupil
functions do not affect the bispectral transfer function . However, the deterministic
aberrations in the remaining four pupil functions may still degrade the bispectral
transfer function . Going further though, the six pupil functions can be shifted
relative to each other to form three separate pairs, where each pair contains two
pupil functions that completely overlap each other ; this alignment of the six pupil
functions is called phase closure [9] . When phase closure occurs, the deterministic
aberrations in all six pupils completely cancel each other out and therefore cause no
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degradation to the bispectral transfer function . Unfortunately these phase-closure
terms contribute only a small fraction of the net contribution made to the bispectral
transfer function at each spatial frequency ; hence, in general, the bispectral transfer
function is degraded by the presence of deterministic aberrations in the system . This
is where the addition of random aberrations into the system is beneficial . The
addition of random aberrations separates the complex wavefront at the pupil into
many small statistically independent subsections . In effect, when these statistically
independent subsections are sufficiently small, the non-phase-closure contributions
to the bispectral transfer function are strongly suppressed ; the phase-closure
contributions, however, remain unaffected because the random aberrations, like the
deterministic aberrations, cancel each other . Thus the random aberrations act as a
`filter' in the bispectral method that passes only the phase-closure contributions to
the bispectral transfer function thereby removing the effects of the deterministic
aberrations .

A detailed description of the phase-closure characteristic of the bispectral
imaging technique in terms of the heuristic interferometric view was given by
Roddier [9], who showed that the technique is insensitive to deterministic
aberrations when random aberrations are present . Lohmann et al. [10] showed
analytically that the bispectral transfer function remains real and positive out to the
diffraction limit when deterministic aberrations and complex Gaussian-distributed,
delta-correlated random aberrations are present . More realistic correlation lengths
for the random aberrations were studied by Barakat and Ebstein [5] for the
one-dimensional case . They modelled the random aberrations as a zero-mean,
finite-variance Gaussian random process that modulated the phase of the wavefront .
In the presence of even deterministic aberrations, such as defocus and spherical
aberration, and Gaussian-distributed Gaussian-correlated random aberrations,
Barakat and Ebstein found that the bispectral transfer function remains real and
positive out to the diffraction limit as long as the variance of the Gaussian
distribution for the random aberrations is not too small . In a more recent paper,
Zhang and Dainty [11] computed the bispectral transfer function from a finite
number of computer-generated, short-exposure, one-dimensional images in the
presence of deterministic and random aberrations . A log-normal model was used to
represent the complex amplitude of the random aberrations . They found that using
a finite number of images produces an unwanted non-zero phase component in the
bispectral transfer function ; this non-zero phase component becomes more severe
when deterministic aberrations are present . However, when a large number of
short-exposure images are used, the non-zero phase component of the bispectral
transfer function is effectively zero and their results then appear to agree with those
of Barakat and Ebstein . Weigelt et al. [12] experimentally found high-resolution
images could be obtained with the bispectral imaging method when atmosphere and
telescope aberrations were simultaneously present . The work of these authors
clearly demonstrates that the bispectral imaging technique is effective at removing
the detrimental effects of deterministic aberrations when random aberrations
are present. However, they do not address the problem of determining the
optimal amount of random aberrations to artificially introduce into a system,
containing only deterministic aberrations, to optimize the image quality of the
reconstruction .

By performing a trial-and-error optimization method through computer
simulations, we have found the amount of random aberrations that optimize image
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quality in a system containing deterministic aberrations . The Strehl ratio is used in
this paper to measure image quality . The optimal amount of random aberrations
produces the maximum Strehl ratio of the reconstruction when imaging a point
source through the system. The reconstructions were obtained at high light levels
using 100 statistically independent images of the two-dimensional object . The point
source was reconstructed using the bispectral imaging method in the presence of
deterministic and Gaussian random aberrations . For a given type and amount
of deterministic aberrations, the Strehl ratio of the reconstructed point spread
function was compared for various standard deviations and correlation lengths of the
Gaussian random aberrations .

The motivation to obtain these results has been a practical one . We are currently
developing a non-invasive technique to reconstruct high-resolution images of the
eye's fundus in human subjects . The fundus is the internal surface of the eye that
is opposite the eye's pupil . The fundus includes such structures as the retina, optic
disk, and pigment epithelium . This non-invasive technique incorporates the
bispectral imaging method . The problem in imaging the eye's fundus through the
optics of the eye is that the deterministic aberrations in the optics of the eye strongly
blur many of the small-scale structures in the fundus . Such small-scale structures
include individual cones and rods as well as blood vessels . Traditional de-blurring
methods are not effective, since the aberrations in the optics of the eye are difficult
to accurately quantify within a given individual and vary considerably between
individuals [13,14] . With the bispectral imaging method, only a rough estimate
of the deterministic aberrations is required . Using the typical types and amounts of
deterministic aberrations found in the average human eye, the results of this paper
will help determine the values for the standard deviation and correlation length of
the random aberrations that will be artificially introduced into the fundus imaging
system to optimize the image quality of the reconstruction .

In section 2 the key quantities used in bispectral imaging are introduced . The
characterization of the deterministic and random aberrations is given ; this
characterization is essentially that used by Barakat and Ebstein [5] and Goodman
[15] . Next Barakat and Ebstein's integral representation of the bispectral transfer
function is described . Their analytic expression of the bispectral transfer function
illustrates the benefits that can be obtained by introducing random aberrations into
a system containing deterministic aberrations . Results from the analytic expression
of the bispectral transfer function are used in explaining the results obtained using
the trial-and-error simulation . In section 3 the trial-and-error simulation is
described. Finally, the results of the simulation are presented in section 4 .

2. Theory of bispectral imaging
The theory of bispectral imaging has been well established [5, 9, 10] . Its key

quantities are given in this section in order to introduce the notation as well as make
later comparisons between the established theory and the results of the trial-and-
error simulation . In addition, Barakat and Ebstein's integral representation of the
bispectral transfer function is described . Their analytic expression is later used
in explaining the results obtained using the trial-and-error simulation given in
section 4 . To simplify the notation, we will deal only with the one-dimensional
case, although the analytic results can be readily extended to the two-dimensional
case .
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We start with a spatially incoherently illuminated, or self-luminous, quasi-
monochromatic object . Assuming the system is linear and shift-invariant, the
recorded image of the object can be expressed as

i(x) =
J
h(x - x')o(x')dx' .

The image i(x) is the convolution between the object o(x) and the point spread
function h(x) . The Fourier transform of equation (1) is given by

I(u) = H(u)O(u),

	

(2)
where 1(u) is the Fourier transform of i(x), O(u) is the Fourier transform of o(x), and
H(u) is the optical transfer function . The optical transfer function is defined as the
autocorrelation of the pupil function P(u) :

H(u) =
J P (p + 2) P*(p - 2) dp .

	

(3)

The image bispectrum is defined as the multiplication of three Fourier image values
at u, v, and u + v . It is expressed as

(I(u)I(v)I *(u + v)) = O(u)O(v)O*(u + v)(H(u)H(v)H *(u + v)),

	

(4)
where () represents an ensemble over all possible realizations . To simplify the
notation, equation (4) is written in the form

(1)

(I (3) (u, v)) is the image bispectrum, 0(3) (u, v) is the object bispectrum, and (T(3)(u, v))
is the bispectral transfer function. The bispectral imaging method extracts
diffraction-limited Fourier phase information of the object from the image
bispectrum . When imaging through Gaussian random aberrations and recording a
sufficient number of statistically independent images of the object, (T (3) (u, v)) has
zero phase and no zero points out to the diffraction limit [5] . As a result, the phase
of the object bispectrum directly equals the phase of the image bispectrum in
equation (5) . This implies that the Fourier phase of the object can be recovered out
to the diffraction limit without compensation for the system's transfer function .
When the system contains deterministic aberrations, (T (3) (u, v)) often contains
non-zero phase as well as zero points; both non-zero phase and zero points are
unwanted characteristics of (T (3) (u, v)) because both cause blurring in the image .
Non-zero phase is defined here as any phase value other than zero and n . Non-zero
phase in (T (3) (u, v)) blurs the image because it destroys the phase relationships
between the spatial frequencies that form the object. Zero points in (T(3) (u, v)) blur
the image because they indicate a 180° phase reversal between spatial frequencies
before and after the zero points . In addition, complete attenuation of the spatial
frequencies at the zero points occurs in the image as well as high attenuation of the
adjacent spatial frequencies, thus causing extremely small signal-to-noise ratios
(SNRs) at these spatial frequencies .

(I 1 ') (u, v)) = 0(3)(u, v)(T ( 3)(u, v)), (5)
where

(P ) (u, v)) = (I(u)I(v)I *(u + v)), (6 a)
0(3)(u, v) = O(u)O(v)O*(u + v), (6 b)

(T(3)(u, v)) = (H(u)H(v)H *(u + v)), (6 c)
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Adding random aberrations into the system can remove some of these unwanted
characteristics in the bispectral transfer function . The degree to which they are
removed depends upon the standard deviation and correlation length of the random
aberrations. However, this benefit of adding random aberrations into the system is
not without a price . The drawback of adding random aberrations is that they reduce
the overall magnitude of the bispectral transfer function . The stronger the random
aberrations are, the smaller the magnitude of the bispectral transfer function
becomes. Thus the SNR of the image bispectrum is reduced and can become the
limiting factor in the quality of the reconstructed image . The problem then is to
determine the standard deviation and correlation length of the random aberrations
that will remove as much as possible these unwanted characteristics in (T (3) (u, v))
caused by the deterministic aberrations, and at the same time maintain the SNR of
the image bispectrum at acceptable levels .

For the trial-and-error simulation, the modelling of the aberrated media is
essentially that used by Barakat and Ebstein [5] and by Goodman [15] . The
deterministic wavefront aberrations W(u) are located at the pupil of the system, but
remain fixed in time . They characterize the performance of the optical system and
multiply the wavefront by the phase factor exp (ikW(u)), where k = 2zt/2 and A is the
wavelength of the incident light . In our study we consider defocus and third-order
astigmatism, coma, and spherical aberration . In two dimensions these aberrations
are defined as [16]

W(u) = W020u2 + W022u2 cost 0 + W03
1U3 cos 0 + W040u 4 , (7)

where u and 0 are polar coordinates in the pupil plane . Astigmatism and coma are
both considered in the isoplanatic case, meaning the point spread function of the
aberrated system is shift-invariant . Defocus, astigmatism, and spherical aberration
are even aberrations because they contain an even power of u. All three induce zero
phase in H(u) and therefore (T (3) (u, v)) likewise contains zero phase . On the other
hand, coma is an odd aberration because it contains an odd power of u . Unlike the
even aberrations, coma does induce non-zero phase in H(u) and therefore induces
non-zero phase in (T (3) (u, v)) .

The random aberrations are modelled as a random process of a thin random phase
screen located at the pupil of the system that induces time-varying fluctuations on
the object's wavefront. The random aberrations multiply the wavefront by the phase
factor exp (ikZ(u)), where Z(u) represents a zero-mean, Gaussian random process :

(Z(u)) = 0,
(8)

(Z(ui)Z(u2)) = a2r(ui - u2) .

In equation (8) a2 is the variance of the Gaussian process Z(u), and r(u i - u2) denotes
the correlation coefficient of Z(u) . In our simulations, r(u l - u2) is taken to be of
Gaussian form and is expressed as

- U2)
2

r(u i - U2) = exp [ - (ul 2 2 ]

	

(9)
P

where V(2)p is the correlation length of Z(u) . The parameters a and p completely
characterize the properties of the random aberrations .
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Combining the effects of the random and deterministic aberrations, the pupil
function P(u) can be written as

P(u) = exp [ik(Z(u) + W(u))] .

	

(10)

Substituting the pupil function, equation (10), into the optical transfer function,
equation (3), yields the following expression for the optical transfer function of the
system :

H(u)= f exp (ik[Z(p+2)-Z(p -2)])exp (ik[W(p+2)-W(p-2)])dp . (11)

Using equation (11) and equation (6 c), one finds that

(T(3)(u,v)) = f f f (exp (ik ± Z„,)) exp (k±Wm)dPidP2dP3 .

	

i(12)
\

	

m=1

	

m=1

In the first exponential term of the integrand, the Zm terms are given by

U)Z2 ==-Zp1 - 2 ,

v
Z4 = - Z(p2 2)'

Z6= Z (P3-2 2
v

) •

are given by

u
W2==-W p1-2 ,

-
W (p2 2)'

W4 =-

W,= -W(p 3 +2+2) W6==W(P3-2 2)
.

Since Z(u) is a zero-mean, Gaussian random process, equation (12) can be
expressed as

(T13)(u,v))
= f f f exp ( - k 2 Cr 2 Q(P1,P2,P3I u,v)) exp (ik± Wm)dPidp2dP3,

M-1
where

Q(pl,p2,p31u,v) = 3 - r(u) - r(v) - r(u + v)

+r(p1 -p2 + 2 2) + r(pl - P2 - 2 + 2)
U v

	

u v
-r PI -P2+2+2)-r p1-p2-2 2

+r(P1 - P3+u+2)+r(p1 - P3 - u - 2)

+r(P2-P3+2+v)+r(P2-P3-2-v)
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-r(p i -p3 + 2) - r(P1 -p3 - 2)

-r p2-p3+ u2 -r(p2-p3-
u
2) .

The first exponential term in the integrand of equation (15) represents the
contribution from the random aberrations . It is an exponentially decaying function
that is real and positive; therefore, in the absence of deterministic aberrations, the
bispectral transfer function will also be real and positive . The deterministic
aberrations are represented by the second exponential term in the integrand . This
term behaves in an oscillating manner . In the absence of random aberrations,
this term induces a non-zero phase in (T (3) (u, v)) for odd aberrations such as coma .
For even aberrations, such as defocus, astigmatism, and spherical aberration, only
zero phase is induced. In general, the deterministic aberrations will cause (T " ) (u, v))
to have zero points and non-zero phase . Both are unwanted characteristics because
they cause blurring in the image . For systems containing only deterministic
aberrations, it is then apparent that the bispectral imaging method will be ineffective,
since the method does not compensate for non-zero phase and zero points in the
bispectral transfer function . Fortunately, if random aberrations are introduced into
the system, the deterministic term in equation (15) is damped by an exponentially
decaying function given by the first term in the integrand . Barakat and Ebstein found
that if the variance of the random aberrations a2 is not too small and the correlation
length \/(2)p is taken to be a typical atmospheric value, the deterministic term is
damped sufficiently to cause the bispectral transfer function to be real and greater
than zero up to the diffraction-limit cutoff frequency when even deterministic
aberrations are present in the system . With the odd aberration coma and the same
random aberrations present, they also found the bispectral transfer function to have
non-zero phase and a magnitude greater than zero up to the diffraction-limit cutoff
frequency .

The problem then becomes one of determining the values of a and p that produce
a bispectral transfer function that optimizes the object reconstruction for a system
containing a given type and amount of deterministic aberrations. Assuming that
optimizing the object reconstruction is strongly correlated with maximizing the
SNR of the system's bispectral transfer function, a possible analytic approach would
be to optimize this SNR for a finite number of frames . The SNR of the modulus
of the bispectral transfer function for M statistically independent images is
defined as

SNRM[(T(3)(u,v))] =
Mod[(T 131(u,v))] _M,

	

(17)
6B

where 6B is the standard deviation of the bispectral transfer function for a single
image . A complicated integral expression for SNRM[(T (3)(u, v))] can be obtained
using equation (15) . Using this expression, optimal values of a and p can, in
principle, be calculated for strategically important values of u and v . Unfortunately,
this theoretical approach is much more computer-intensive than finding the appro-
priate statistical parameters using a trial-and-error simulation approach . In addition,
various sources of noise as well as different types of two-dimensional objects can
easily be incorporated into the simulation to model a particular application . Due to
these reasons, the trial-and-error simulation approach was chosen .
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Figure 2 . Flow chart of trial-and-error simulation showing the generation of the aberrated
images as well as the reconstruction of the object using the bispectral imaging method .

3 . Description of trial-and-error simulation
In the simulation, various amounts of random aberrations were added to an

optical system containing a specified amount and type of deterministic aberrations .
The values of r and p of the random aberrations that resulted in the best
reconstruction, using the bispectral imaging technique, were determined to be the
optimal value. All objects used in the simulation were two-dimensional. A flow chart
of the simulation is given in figure 2 showing the generation of the aberrated images
as well as the reconstruction of the object using the bispectral imaging method .

The test object for the simulation was taken to be a point source, and the Strehl
ratio was used as the figure of merit . The Strehl ratio is defined as the ratio of the
light intensity at the peak of the diffraction pattern of an aberrated image to that at
the peak of an aberration-free image [17] . Generally, an optical system is considered
to be diffraction-limited if it has a Strehl ratio greater than 0 .8 . The simulation was
done in the high-light-level region . In this region the effect of photon noise is
negligible and therefore can be neglected . In the simulation, 100 statistically
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independent aberrated images of the point source were used to estimate the point
source's bispectrum . From equation (17) note that the SNR of the bispectral transfer
function for M aberrated images is proportional to VM. Ayers et al. [18] and
Nakajima [19] showed that the SNR of the bispectrum for a single aberrated image
is proportional to ro/D, where D is the diameter of the entrance pupil and ro is Fried's
parameter, which is equal to the diameter of the diffraction-limited system whose
Airy disc has the same area as the long-exposure point spread function of the
aberrated system of diameter D ; ro was first defined by Fried [20] and is a measure
of image blurring caused by the random aberrations . Nakajima's result shows that
the random aberrations are a noise source when estimating the bispectrum from a
finite number of aberrated images, as is the case in this trial-and-error simulation .

The bispectral imaging technique was used to reconstruct the object's Fourier
phase. We used the standard recursive algorithm to extract the diffraction-limited
information of the object's Fourier phase from the bispectrum [10] . The recursive
algorithm was chosen over other algorithms in the literature [21-23] due to its fast
reconstruction capability . A fast reconstruction was highly desirable due to the large
number of reconstructions needed in the simulation . The recursive algorithm
directly utilizes the linear combination of object Fourier phases that make up the
bispectrum phase. The (u, v, 1, 0) and (u, v, 0, 1) subplanes of the four-dimensional
bispectrum were used in computing two estimates for each Fourier phase term of
the object . The reconstructed Fourier phase was an average of the two estimates .
Using other statistically independent subplanes of the bispectrum in the reconstruc-
tion would increase the SNR of the result in marginal signal situations, but would
also increase the computation time .

The reconstructed Fourier phase was then combined with the diffraction-limited
Fourier modulus of the object . Techniques are available to reconstruct the object's
Fourier modulus, such as stellar speckle interferometry [24] . We were solely
interested in the performance of the bispectral imaging technique and therefore did
not want errors in the reconstructed Fourier modulus to affect the results .
Consequently, we assumed a priori knowledge of the diffraction-limited Fourier
modulus.

In the simulation, each image was represented by a 128 X 128 complex array . The
diameter of the circular pupil, representing the pupil of the optical system, was 64
pixels . The rectangular sample grid produced small artifacts in the images, such as
a slight loss in the circular symmetry of the imaged point source . This artifact is more
apparent in the diffraction-limited case than when the system contains circularly
symmetric aberrations such as defocus or spherical aberration .

The deterministic aberrations used in the simulation were defocus, and
third-order coma, astigmatism, and spherical aberration . Astigmatism and coma
were considered in the isoplanatic case . The four aberrations were evaluated at
strengths of 1), and 37,, where % is the wavelength of the incident light . By analysing
the simulation-generated blurred images resulting from imaging the point source
through systems having these aberrations at strengths of 17 and 3,,, as well as the
diffraction-limited case, we empirically found that aliasing errors in the blurred
images, due to sampling of the wavefront in the pupil plane, were negligible .

The random aberrations, which multiply the wavefront by the phase factor
exp (ikZ(u)), were generated in the following manner . Each realization of a
zero-mean, Gaussian-distributed, delta-correlated random process was generated in
a 512 X 512 complex array using a Gaussian random number generator based on a
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subtractive method [25] . As was previously defined in equation (8), a 2 is the variance
of the Gaussian distribution of the random process . Each realization was then
convolved with an appropriate Gaussian function to make zero-mean, Gaussian-
distributed, Gaussian-correlated random aberrations ; p2/2 is the variance of the
convolving Gaussian function and V(2)p was previously defined in equation (9) as
the correlation length of the random aberrations . The convolving Gaussian function
was given in a 512 X 512 complex array and was specified out to three standard
deviations . The remaining part of the 512 X 512 complex array was padded with
zeroes. Only a 64 X 64 section of the 512 X 512 zero-mean, Gaussian-distributed,
Gaussian-correlated complex array was used to represent the random aberrations in
the simulation . Using such a small section of the 512 X 512 complex array enabled
p to extend up to one pupil diameter (64 pixels) without any wrap-around artifacts .
In the simulation, a ranged from 0 . 25 A to 2 . 00 A in increments of 0 . 25 A. Likewise,
p ranged from 0 . 1 D to 1 .0D in increments of 0 . 1 D, where D is the diameter of the
system's pupil. This resulted in 80 data points covering a wide range of a and p
values .

Figure 3 contains a contour plot of the Strehl ratio of the long-exposure point
spread function (PSF) as a function of a and p. The long exposure is defined here
as a direct ensemble average of the 100 distorted images . Certain strengths did result
in noticeable amounts of aliasing in the blurred images due to undersampling in the
pupil plane . In particular, noticeable aliasing occurred for a = 1 . 25 A and p = 0 . 1 D,
a=1 . 50A.andp=0 . 1D,a=1 .75A.andp=0-1D,anda=2. OOAandp=0 . 1D;these
four a-p values produced the most image blurring and correspond to values in the
upper left of the contour plot. The Strehl ratios for the other values range from 0 . 003
to 0 . 767. When converted to the Kolmogorov model [26], the random aberrations
have D/ro values approximately ranging from 0 .6 to 22. This clearly indicates the
wide range of random aberration strengths used in the simulation .

Figure 4 illustrates the accuracy of the random aberrations generated in the
computer simulation. The figure shows several modulation transfer function (MTF)
curves of the simulated data as well as corresponding theoretical MTF curves for
the diffraction-limited case, a = 0 .25 A and p = 1 . 0 D, a = 0 . 75 ti and p = 0 . 7 D, and
a = 1 . 50 .1 and p = 0 . 2 D . The MTF curves of the simulated data were generated by
taking the modulus of the Fourier transform of the long exposure PSFs . The
theoretical MTFs were obtained using [27]

Mod [H(u)] = Ho(u) exp [ - a2' 1 - exp [ 2u 2] /],

	

(18)
\

	

/P

where Ho(u) is the diffraction-limited MTF . Equation (18) was derived for the case
of a thin random-phase screen located at the pupil of the system that was
Gaussian-distributed and Gaussian-correlated . Excellent agreement is found
between the simulated and theoretical results for MTF values above 0 .02 .

4. Results of trial-and-error simulation
4.1 . Systems with only random aberrations

In the simulation, reconstructions of a point object were first obtained for systems
containing only random aberrations having various values of a and p . These
reconstructions indicate the ability of the bispectral imaging method to overcome
the distorting effects of the random aberrations . They represent an upper limit for
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No Deterministic Aberrations
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1<
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0.6

	

0.8
p (units of pupil diameter)

Figure 3 . Contour map of the long exposure Strehl ratios drawn on the Q-p plane. No
deterministic aberrations were present in the system .

Diffraction Limit

a=0.25x., p=1 .OD

a=0.75X, p=0 .7D

1 .0

.0

	

0.2

	

0.4

	

0.6

	

0.8

	

1 .0
Normalized Spatial Frequency

Figure 4 . Modulation transfer functions for various strengths of the random aberrations,
including the diffraction-limited case ; (-) theoretical results, (- - -) simulated results,
based on one hundred realizations .

the reconstructed Strehl ratio when the system contains both random and
deterministic aberrations . This upper limit is evident in the analytic expression of
the bispectral transfer function given by equation (15) . In equation (15) the
deterministic aberrations contribute to the bispectral transfer function through the
second exponential term in the integrand . When there are no deterministic
aberrations in the system, this second term is equal to unity, and therefore the
transfer function is completely characterized by the random aberrations and the size
of the pupil. When deterministic aberrations are present, however, this second term
is a complex exponential that causes a reduction in the magnitude of the bispectral
transfer function and therefore a reduction in the bispectral transfer function's SNR .
This lower SNR in turn causes the reconstructed Strehl ratio to be lower than that
of the no-deterministic-aberration case .

Using the bispectral imaging method on systems containing only random
aberrations, the Strehl ratios of the reconstructions for various values of a and p are
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Figure 5 . Contour map of the reconstructed Strehl ratios drawn on the a-p plane. No
deterministic aberrations were present in the system .

shown in the contour plot of figure 5 . These reconstructions show a significant
improvement over the long exposure results given in the contour plot of figure 3 .
The long-exposure results are not considered to be diffraction-limited since their
Strehl ratios are all less than 0 . 8 . In fact, 87% of the long exposures have a Strehl
ratio bglow 0 . 3 . However, by using the bispectral imaging method, 65% of the
reconstructions in figure 5 are considered to be diffraction-limited .

For illustrative purposes, the long-exposure and reconstructed images are shown
in figure 6 . In the figure the centre 64 X 64 pixel areas of the 128 X 128 pixel images
are displayed on a a-p plot. The position of each individual image on the a-p plot
is determined by the values of a and p used in generating that particular image .
Figure 6 displays the long-exposure and reconstructed images on two separate a-p
plots. To facilitate comparison, all images in figure 6 were scaled to have the same
maximum intensity value. These results vividly illustrate the power of the bispectral
imaging method to unscramble images distorted by random aberrations . Its
usefulness to the astronomy community is quite evident .

4.2 . Systems with random aberrations and three waves of deterministic aberrations
The deterministic aberrations used in the simulation were defocus, and

third-order astigmatism, coma, and spherical aberration. For systems with three
waves of either defocus, astigmatism, coma, or spherical aberration, the correspond-
ing Strehl ratios are 0 . 01, 0 . 06, 0 . 09, and 0 . 03, respectively . These values are given
in the third column of table 1 . The small size of these Strehl ratios clearly indicates
the large strength of the deterministic aberrations .

The random aberrations used in section 4 .1 were then combined with these
deterministic aberrations . In this case the system contained random aberrations
having various values of a and p, and three waves of either defocus, astigmatism,
coma, or spherical aberration . Four contour plots of the Strehl ratios of the
reconstructions using the bispectral imaging method are given in figure 7 .
Comparing the three a-p contour plots containing the even aberrations in figure 7
with the Strehl ratios given in the third column of table 1, one finds that many of
the reconstructed Strehl ratios are significantly larger than those of the original
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0 .I

0 .5

	

1 .0
p (units of pupil diameter)

Figure 6 . Top image contains the long exposure images displayed on the a-p plane; bottom
image contains the reconstructed images using the bispectral imaging method displayed
on the a-p plane . Each individual image represents the long exposure or reconstructed
point spread function of the system for particular values of a and p . The system contains
random aberrations whose strength is specified by a and p and no deterministic
aberrations . Each of the individual images displayed on the a-p planes is the centre
64 X 64 pixel subsection of the original 128 X 128 pixel image .

0 .I

0.5
p (units of pupil diameter)

80 Reconstructed Ima es
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Table 1 . Strehl ratios for systems containing three waves of defocus, astigmatism, coma, and
spherical aberration . The third column contains the Strehl ratios for systems with only
deterministic aberrations present . The fourth column contains the maximum
reconstructed Strehl ratios found in the contour plots of figure 7, along with the
corresponding values of a and p . For the even-order aberrations, note the significant
improvement of the reconstructed Strehl ratios using the bispectral method compared
to the Strehl ratios for systems with only deterministic aberrations .

1 .0
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0.6

	

0.8
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(unite of pupil diameter)
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p (unite of pupil diameter)

0.2 0 .4

	

0.6

	

0.8
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1 .0

Figure 7 . Four contour maps of the reconstructed Strehl ratios drawn on the v-p plane. The
deterministic aberrations present in the system were three waves of defocus,
astigmatism, coma, and spherical aberration .

Deterministic
aberrations

Size of
aberrations

Strehl ratio for
stystem with
deterministic
aberrations

Maximum
reconstructed
Strehl ratio

W020 3A 0 .01 0 . 50 (v=1 . 75 A, p=0 . 9D)
W022 3 A 0 . 06 0 . 65 (a = 1 . 25 .1, p = 0-6D)
W031 3 R 0 .09 0 . 20 (a = 1 . 25 A, p = 0-6D)
W04o 3 A 0 . 03 0 . 63 (a= 2 . 00 A, p = 0 . 8 D)
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system containing only the deterministic aberrations . This suggests that many of the
zero points in the bispectral transfer function due to the deterministic aberrations
have been eliminated by introducing random aberrations into the system . In
addition, it indicates that the SNR of the (u, v, 1, 0) and (u, v, 0, 1) planes in the
image bispectrum remained acceptable after the random aberrations were
introduced .

For the odd aberration coma, the results in figure 7 are quite different . The
reconstructed Strehl ratios show only a modest increase over that of the original
system containing only the deterministic aberration . Like the even aberrations, coma
can introduce zero points into the bispectral transfer function. In addition though,
it also introduces a non-zero phase into the bispectral transfer function . The results
of figure 7 suggest that this non-zero phase is not eliminated from the bispectral
transfer function when random aberrations are introduced into the system .

From the three v-p contour plots containing the even aberrations in figure 7, the
best reconstructions occur along a diagonal line roughly through the centre of
the plots; this is an interesting result . It shows that introducing very weak random
aberrations (lower-right section of contour plots) into the system results in very poor
reconstructions . In this region the deterministic aberrations dominate and therefore
limit the quality of the reconstruction . In the analytic expression of the bispectral
transfer function given by equation (15), this corresponds to the second exponential
term in the integrand being the dominating component in the integrand . In this case
the first exponential term, which contains the random aberrations, does not decay
sufficiently to eliminate the zero points in the bispectral transfer function that are
caused by the deterministic aberrations, in the second exponential term . Thus, poor
reconstructions are obtained that are similar in quality to those for systems
containing only deterministic aberrations. When very strong random aberrations
(upper-left section of contour plots) are introduced into the system, poor
reconstructions are also obtained . In this region the random aberrations are now the
dominating component, and therefore limit the quality of the reconstruction . In
equation (15) this corresponds to the first exponential term in the integrand being
the dominating component in the integrand . In this case the zero points in the
bispectral transfer function are essentially eliminated by the first term due to the first
term's strong exponentially decaying behaviour . However, this first term decays so
rapidly that the resulting magnitude of the bispectral transfer function becomes too
small. In this case the noise generated from estimating this small magnitude from
100 aberrated images becomes the main limiting factor in the quality of the
reconstructed object. Along a diagonal line through the centre of the plots, however,
a compromise is achieved between the detrimental effects of the random and
deterministic aberrations . In this region the combined image-degrading effects of
the random and deterministic aberrations within the bispectral transfer function are
minimized, thus producing the best reconstructions . In equation (15) this
corresponds to the first exponential term exponentially decaying fast enough to
eliminate many (but possibly not all) of the zeroes in the bispectral transfer function
caused by the second term, yet decaying slow enough for the bispectral transfer
function's magnitude to stay at an acceptable level above the noise .

The last column of table 1 contains the maximum Strehl ratios found in
the reconstructed Strehl ratios in figure 7 for each of the four deterministic
aberrations . From table 1 one finds that the bispectral imaging method was unable
to produce diffraction-limited reconstructions . Image quality, however, did improve
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significantly for systems with even aberrations . In comparing columns three and four
of table 1, note that the reconstructed Strehl ratios using the bispectral imaging
method were 10-50 times larger than those for systems with only deterministic
aberrations. This is a dramatic improvement in image quality. For the odd
aberration, however, an increase of only a factor of two was obtained .

For illustrative purposes, the long exposure and reconstructed images for the
defocus and astigmatic cases are shown on the a-p plots in figures 8 and 9,
respectively . In the long-exposure images, notice the upper-left and lower-right
sections of the a-p plots where the effect of the random and deterministic aberrations
dominate each other . These two regions are separated by a transition region where
the best reconstructions are found . Finally, note the extreme difference in image
quality between the long-exposure and reconstructed images. The benefit of
introducing random aberrations into a system with deterministic aberrations and
then applying the bispectral imaging method is quite clear .

4.3 . Systems with random aberrations and one wave of deterministic aberrations
For systems with one wave of either defocus, astigmatism, coma, or spherical

aberration, the corresponding Strehl ratios are 0 .05, 0 . 23, 0 .53, and 0 . 09,
respectively . These values are given in the third column of table 2 . The random
aberrations used in section 4.1 were then combined with these deterministic
aberrations. In this case the system contained random aberrations having various
values of a and p, and one wave of either defocus, astigmatism, coma, or spherical
aberration. Four contour plots of the Strehl ratios of the reconstructions using
the bispectral imaging method are given in figure 10 . The last column of table 2
contains the maximum Strehl ratios found in the a-p plots of figure 10 . In these
contour plots, the largest reconstructed Strehl ratios generally occur when weak
random aberrations (lower-right section of contour plots) are present in the system .
This is in sharp contrast to the results of section 4.2 that are given in figure 7 . In
figure 7, the best reconstructions occur along a diagonal line through the centre of
the a-p plots .

Note that in the a-p contour plot containing the odd aberration coma in
figure 10, the reconstructed Strehl ratios show at best only a modest increase over
that of the original system containing only the deterministic aberration. The
maximum reconstructed Strehl ratio is 0 which is an increase of only 0 .11 over
that of the deterministic-aberration-only case . For the three even aberrations,
however, the results are quite different . Most of the reconstructed Strehl ratios are
significantly larger than those of the deterministic-aberration-only case . The largest
Strehl ratio obtained for each of the even aberration cases ranged from 0 .90 to 0 . 95 .
The results show that introducing all but the very strong random aberrations
produces significant improvement when even aberrations are present. Better still,
diffraction-limited reconstructions were obtained over a large range of a and p
values. Fortunately, these diffraction-limited regions overlap significantly . This
implies that by choosing a random aberration that falls within the overlapping
diffraction-limited regions in the a-p space, one can obtain a diffraction-limited
reconstruction when the system has one wave or less of defocus, astigmatism, or
spherical aberration .

To illustrate this result, an extended real object was reconstructed that had been
blurred by one wave of either defocus, astigmatism, or spherical aberration . Random
aberrations having a = 0 .75 2 and p = 1 .0 D were added to the system . From
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80 Long Exposure Images

0

U
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0 .I 0 .5
p (units of pupil diameter)

80 Reconstructed Images

0.5
p (units of pupil diameter)

Figure 8. Top image contains the long exposure images displayed on the a-p plane; bottom
image contains the reconstructed images using the bispectral imaging method displayed
on the a-p plane . Each individual image represents the long exposure or reconstructed
point spread function of the system for particular values of a and p . The system contains
random aberrations whose strength is specified by a and p and three waves of defocus .
Each of the individual images displayed on the a-p planes is the centre 64 X 64 pixel
subsection of the original 128 X 128 pixel image .
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0.I 0.5
p (units of pupil diameter)

80 Reconstructed Images
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p (units of pupil diameter)

Figure 9 . Top image contains the long exposure images displayed on the 6-p plane; bottom
image contains the reconstructed images using the bispectral imaging method displayed
on the a-p plane. Each individual image represents the long exposure or reconstructed
point spread function of the system for particular values of v and p . The system contains
random aberrations whose strength is specified by a and p and three waves of
astigmatism . Each of the individual images displayed on the a-p planes is the centre
64 X 64 pixel subsection of the original 128 X 128 pixel image .
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Table 2 . Strehl ratios for systems containing one wave of defocus, astigmatism, coma, and
spherical aberration . The third column contains the Strehl ratios for systems with only
deterministic aberrations present . The fourth column contains the maximum
reconstructed Strehl ratios found in the contour plots of figure 10 along with the
corresponding values of a and p . For the even-order aberrations, note the significant
improvement of the reconstructed Strehl ratios using the bispectral method compared
to the Strehl ratios for systems with only deterministic aberrations .
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Figure 10 . Four contour maps of the reconstructed Strehl ratios drawn on the a-p plane .
The deterministic aberrations present in the system were one wave of defocus,
astigmatism, coma, and spherical aberration .

Deterministic
aberrations

Size of
aberrations

Strehl ratio for
system with
deterministic
aberrations

Maximum
reconstructed
Strehl ratio

W020 12 0 .05 0 . 94 (a = 0 . 50 2, p = 1 . 0 D)
W022 12 0 . 23 0 . 96 (a = 0 . 50 2, p = 1 . 0 D)
W031 12 0 .53 0 .64 (a=0 . 252, p=0 . 2D)
W04 0 1 2 0 . 09 0 . 95 (a= 1 . 50 2, p = 1 . 0 D)
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Figure 11 . Top image is the original 128X128 extended object ; below it is the
diffraction-limited image of the object, as well as a surface plot of the diffraction-limited
point spread function of the system . The diffraction-limited image is noticeably blurred
due to a small pupil diameter .

figure 10 this strength of the random aberrations falls within the overlapping
diffraction-limited regions, and thus should produce diffraction-limited reconstruc-
tions . The original 128 X 128 object is shown at the top of figure 11 . Below it is the
diffraction-limited image of the object as well as a surface plot of the diffraction-
limited point spread function . The diffraction-limited image is noticeably blurred
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Defocus = 1A, Astigmatism = 1X

;IiItiIIII'.

Spherical =1A

Figure 12. Top row contains original blurred images of the extended object, which is shown
in figure 11 . The object was blurred by one wave of either defocus, astigmatism, or
spherical aberration . Surface plots of the associated point spread functions for the
aberrated system are given in the second row . The third row contains the reconstructed
images after random aberrations, having a = 0 . 75 ;, and p = 1 . 0 D, were added to
the system . Surface plots of the reconstructed point spread functions are given in the
last row .

due to a pupil diameter of only 64 pixels. This diameter was chosen in order to use
the realizations of the random aberrations previously generated in section 3 .

The results are shown in figure 12 . The top row contains the original blurred
images of the extended object . The object was blurred by one wave of either defocus,
astigmatism, or spherical aberration . Surface plots of the associated point spread
functions for the aberrated system are given in the second row . The third row
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contains the reconstructed images after random aberrations, having a = 0 .75 A and
p = 1 . 0D, were added to the system . The Fourier phase was reconstructed using the
bispectral imaging method and the Fourier modulus was assumed to be known
a priori. Surface plots of the reconstructed point spread functions are given in the
last row. From figure 12 the reconstructed images are significantly better than the
original blurred images and, in comparing the reconstructions to the diffraction-lim-
ited image of figure 11, are considered near-diffraction-limited .

5 . Summary
We have investigated the bispectral imaging method as a technique for

de-blurring an image that is formed from a system with unknown aberrations .
Through computer simulations we have found the optimal amount of random
aberrations to have present in a system containing certain types and amounts of
deterministic aberrations-this amount optimizes the Strehl ratio of the reconstruc-
tion at high light levels .

In particular the following conclusions can be made . The method was found to
work well in reconstructing images for systems with even aberrations such as
defocus, astigmatism, and spherical aberration . Poor reconstructions however were
obtained for systems with the odd aberration coma . Secondly, from the results
shown in figures 7 and 10, it was found . that the optimal values of a and p depend
in a complicated manner upon the type and amount of deterministic aberrations
present in the system . Though this dependency is complicated, important practical
and useful results can be extracted . For example, it was found that diffraction-
limited reconstructions are possible over a wide range of a and p values for systems
with one wave or less of either defocus, astigmatism, or spherical aberration .
In addition, these diffraction-limited regions were found to overlap significantly .
For applications utilizing this method, this is an important result ; it permits easier
fabrication of the random aberrations due to the larger tolerances on a and p .
More importantly, knowledge of the precise amount of deterministic aberrations in
the system is not required. To assure oneself of a diffraction-limited result, the
results in figures 10 and 12 indicate that one only needs to know that the system under
study contains one wave or less of either defocus, astigmatism, or spherical
aberration .

These results indicate that the bispectral imaging method is a promising
technique for de-blurring an image that is formed from a system with unknown
aberrations at high light levels . Its applicability to reconstructing high-resolution
images of the eye's fundus in human subjects is currently being investigated . The
effect of noise sources, such as photon and read noise, on the bispectral method's
reconstruction capability in the presence of random and deterministic aberrations
is also being examined .
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