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A~~act-Inte~eren~ fringes whose spatial frequency exceeds the resolution limit form visible moirk 
patterns with the fovea1 cone mosaic. This paper describes a model of fovea1 cone sampling that shows 
how these moir& patterns depend on the spatial frequency and orientation of an interference fringe imaged 
on a triangular lattice of cones. The model is tested with two psychophysical experiments. The first 
experiment shows that the behavior of the moiri patterns is quantitatively consistent with anatomical 
estimates of cone spacing across the human fovea. These patterns provide a psychophysical method for 
measuring cone spacing within 1.75 deg of the fovea1 center. In some observers, cone spacing is larger in 
a horizontal direction than in a vertical direction at any particular location within the fovea. The second 
experiment shows that the behavior of the moirb patterns is consistent with the ~ang~ar packing of fovea1 
cones observed anatomi~lly, and allows the o~entation of the cone mosaic to be dete~n~ at the fovea1 
center. These observations demonstrate the rich information that methods based on aliasing can provide 
about the topography of fovea1 cones in the living human eye. 

Cone spacing Fovea Laser interferometry 
Resolution Acuity Human 

Despite the importance of the fovea for human 
vision, there exists surprisingly little quan- 
titative information about its topography. i)s- 
terberg’s classic study (1935) of the distribution 
of cones across the human retina is based on a 
detailed study of a single human eye. A recent 
study by Curcio et al. (1987) provides anat- 
omical estimates of human cone spacing in an 
additional four eyes. There have also been re- 
cent estimates of cone spacing in the monkey 

*Helmholtz (1962) noted that at spatial frequencies of 
465Oc/deg and above, a fine pattern of parallel wires 
viewed in the fovea appears distorted. He attributed this 
effect to the cone mosaic. The author (Williams, 1985a) 
rejected Helmholtz’s suggestion because this range of 
frequencies lies below the Nyquist frequency at the 
fovea1 center of about 56c/deg on average. I also 
incorrectly reported the range of frequencies over which 
Helmholtz observed the phenomenon. The spatial fre- 
quency range actually reported by Helmholtz is above 
the cone Nyquist frequency for retinal eccentricities 
beyond about a half degree from the fovea1 center. It is 
possible that Helmholtz was indeed viewing the first 
hints of aliasing by the fovea1 or parafoveal cone mosaic, 
despite the fact that he was viewing gratings in incoher- 
ent light. The author has observed similar effects pro- 
duced by the high spatial frequency raster of television 
screens displaying a uniform field. 

Mosaic Aliasing Sampling Spatial vision 

(Perry and Cowey, 1985; de Monasterio et al., 
1985; Hirsch and Miller, 1987). However, the 
fovea1 cone mosaic is extremely fragile, even in 
the hands of the most skilled anatomist, and it 
is difficult to be certain that measurements of 
the mosaic have not been distorted by shrinkage 
and other forms of histological artifact. This 
paper describes a noninvasive, psychophysical 
technique that allows the topography of the 
fovea1 mosaic to be mapped in the living eye. 

Byram (1944) discovered that interference 
fringes could be detected in the fovea even when 
they were much finer than the resolution limit of 
about 60c/deg.* These high frequency inter- 
ference fringes have a wavy, shimme~ng ap- 
pearance that Byram suggested was a moir& 
pattern formed with the cone mosaic. The moiri 
patterns could be seen at spatial frequencies as 
high as 150 c/deg. Williams (1985a) extended 
these observations with an improved laser inter- 
ferometer, and presented the first direct evi- 
dence that the entoptic “zebra stripes” seen by 

observers viewing fine fringes were indeed 
caused by cone aliasing. The appearance of the 
zebra stripes at the fovea1 center was quan- 
titatively consistent with the moirC patterns 
predicted from anatomical estimates of fovea1 
cone spacing. Aliasing has also been observed 
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under conditions that isolate the blue-sensitive 
mechanism (Williams and Collier, 1983a; 
Williams et al., 1983b) and in the extrafoveal 
retina (Williams, 1985a; Coletta and Williams, 
1987; Witliams and Coletta, 1987; Thibos er al., 
1987; Smith and Cass, 1987). 

The present paper develops a theoretical 
framework for deducing the topography of the 
fovea1 mosaic from the entoptic moire patterns 
produced by afiasing. It confirms the anatomical 
evidence for a quasi-regular packing arrange- 
ment of fovea1 cones, and presents mea- 
surements of cone spacing across the living 
human fovea. 

functions: one at the origin, the zero-order delta 
function, and two that are symmetrically posi. 
tioned with respect to the origin. I will refer ~t.-t 

these tatter two as the.first -order delta ~~~~F~~)~s 

of the fringe spectrum. The distance from the 
origin of the first-order delta functions specifies 
the fringe spatial frequency,.f. and their angular 
position relative to the positive II axis specifies 
the fringe orientation. 0. 

Optics if the eye 

i. MODEL OF FOVEAL ALIASING 

To use aliasing to explore fovea1 topography, 
we must first develop a theoretical model that 
shows how the observed moire patterns should 
depend on the properties of both the stimulus 
and the mosaic. The retinal image is effectively 
two-dimensional, so that the sampling theory 
developed originally for one-dimensional sig- 
nals must be extended to two dimensions (see 
Peterson and Middleton, 1962; Mersereau, 
1979; and Fales ef al., 1984 for treatments of 
two-dimensional sampling theory). The model is 
developed in the spatial frequency domain since 
intuitions about the behavior of moire patterns 
are more easily visualized in frequency than 
in space. The components of the model are 
described qualitatively here; a more rigorous 
description can be found in the Appendix. 

For present purposes, the eye’s optics are 
assumed to have no effect on interference fringes 
for spatia1 frequencies out to the highest passed 
by the pupil. The pupil cut-off frequency, ex- 
pressed in cycles/deg, is 7rp/ 18OL. where p is the 
diameter of the pupil and 1” the wavelength of 
light (Goodman, 1968). Thus for a dilated 8 mm 
pupil and 3. = 632.8 nm, the highest spatial fre. 
quency that can be imaged on the retina is 
221 c/deg. This cut-off is well above the highest 
frequency at which aliasing has been identified 
in the fovea (about 150-160 c/deg, Williams, 
1985a). and is omitted in the model. 

Interference fringes 

The stimulus is an interference fringe, cen- 
tered on the fovea, whose intensity is a cosine 
function of position along one retinal meridian, 
as shown in Fig. l(A). The fringe has a period, 
l/S, and an orientation, 8. Figure l(B) shows the 
amplitude spectrum of the stimulus in the spa- 
tial frequency plane. It consists of three delta 

The photoreceptor mosuk 

The interference fringe is imaged on an ideal- 
ized cone mosaic in the model. The mosaic is an 
array of circular elements whose terms form 
a triangular lattice,* as shown in Fig. l(C). TO 
simplify the analysis, the mosaic is assumed to 
be perfectly regular. 

Each cone has an aperture of finite diameter 
whose effect on an interference fringe is to 
reduce contrast with increasing spatial fre- 
quency. The low pass filtering performed by the 
cone aperture is one of the factors limiting the 
highest spatial frequencies at which aliasing can 
be seen (Miller and Bernard, 1983; Williams, 
1985a, b). We ignore the effect of the cone 
aperture for the time being, since it has been 
shown (see the Appendix) that the demod- 
ulation it produces is not severe enough to 
obliterate the moire effects of interest here. For 

_-_____. 

*The terms “hexagonal” and “triangular” are both used to 
present purposes, it is convenient to strip away 

describe this lattice (e.g. Ahuja and Schachter, 1983; 
the cone aperture from the mosaic and to 

Shapiro et al., 1985). If fovea1 cones were truly hexago- consider only the locations of the centers of 

nal in crossection with no gaps between them, there cones in the array. This lattice, depicted with 
would be no ambiguity in describing the mosaic as a solid dots in Fig. t(C), is critical for under- 
“hexagonal tessellation” (Coxeter, 1969). However, the 
analysis of the sampling properties of the cone mosaic 

standing the sampling consequences of the 

rests on the lattice of points corresponding to cone 
mosaic. Each cone center is surrounded by six 

centers. This lattice is specified by the vertices of a equidistant neighbors with angular separations 

tessellation of triangles rather than hexagons. This mo- of 6Odeg between neighbors. Note that cones 
tivates the use of the term “triangular” to describe the arranged in this way have three cardinal axes, 
corresponding lattice. corresponding to parallel rows of cones that run 
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Fig. I. (A) Sinusoidal interference fringe with spatial period, Iif, and orientation, f?. (B) Fourier transform 
of interference fringe depicted in the 2-D spatial frequency plane. The transform consists of three delta 
functions: a zero-order component at the origin and two first order delta functions at coordinates (+,, w,,) 
and (-v,, -wO), The spatial frequency, J of the fringe is specified by the distance of the first order delta 
functions from the origin, indicated by the dotted line. The orientation of the fringe is specified by 8. 
(C) Section of the regular mosaic of cones employed to model fovea1 aliasing. The large circles represent 
the apertures of individual cones, whose centers are indicated by black dots. The array of cone centers 
forms a perfect triangular lattice with center to center spacing, s, and row spacing, r. The three cardinal 
axes of the mosaic are defined by the orientations of rows of cones, and are indicated by the arrows around 
the perimeter of the mosaic. (D) Fourier transform of the lattice of cone centers, which is also a triangular 
lattice. The six delta functions surrounding the delta function at the origin are thefirst-order ~~~u~ncf~~~~ 
of the mosaic spectrum. The distance between the first-order delta functions and the origin, t/r, 
corresponds to the fundamental frequency of the mosaic and is equal to the reciprocal of the row spacing. 
Only the first and second order delta functions are shown, though the complete spectrum contains higher 

order delta functions as well. 
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in each of three orientations. These axes are 
indicated by arrows around the perimeter 
of Fig. l(C). The center-to-center separation 
between cones, s, corresponds to the spacing 
between adjacent cones within a row. A more 
convenient descriptor, which will be adopted 
here, is the spacing between rows of cones, r, 
which equals sJ3/2. 

Figure l(D) shows the amplitude of the 
Fourier transform of the lattice of cone centers. 
Like its counterpart in the spatial domain, it is 
also a triangular lattice. The delta function at 

WILLIAMS 

the origin is surrounded by an inner ring of six 
delta functions, which I will refer to as the,first- 
order delta functions of the mosaic spectrum 
The distance between the origin and any first- 
order delta function is equal to I/r, which 
corres-ponds to the fundamental spatial fre- 
quency, or first harmonic. of the photoreceptor 
mosaic. 

The consequences of imaging an interference 
fringe on this idealized mosaic is first described 
in the spatial domain: the process of sampling 
the fringe corresponds to multiplying the distri- 

-” 

(Cl 

Fig. 2. (A) Representation in the 2-D frequency plane of the triangular lattice sampling the interference 
fringe depicted in Fig. 1. Black dots represent the delta functions of the original mosaic spectrum. For 
a lattice of infmitely small sample points, there exists an infinite number of delta functions in the mosaic 
spectrum, only the central seven of which are depicted. White dots represent the first order delta functions 
of the original fringe spectrum. The process of sampling the fringe has produced replicas of the fringe 
spectrum at each of the delta functions of the mosaic spectrum. Solid lines connect the corresponding 
first-order spectra of each replica. (B) The same spectrum as shown in (A), but produced by convolving 
the spectrum of the mosaic with the spectrum of another sinusoidal grating of higher spatial frequency 
and different orientation. Dotted lines connect the corresponding first order delta functions of the original 
fringe spectrum. The many-to-one mapping of stimuli to mosaic output represents the information lost 
by sampling, since there is an infinite number of fringes that will produce exactly the same distribution 
of intensity at each sample point. (C) The spectrum of (A) and (B) has been replotted along with the 
window of visibility, the shaded hexagon centered at the origin that shows that area of the frequency piane 
that the postreceptoral visual system can pass. The surrounding six hexagons represent “first-order 
windows”. If the original fringe had been that depicted by the dotted line at the origin, the first-order 
delta functions of the fringe spectrum fall outside the zero-order window and into the first order windows. 

A low frequency alias, shown by the solid line would be passed by the window. 



Topography of the fovea1 cone mosaic 431 

bution of intensity in the fringe by the array of 
cone locations. This multiplication produces the 
moire patterns that are the entoptic fingerprint 
of the cone mosaic. The equivalent operation in 
the spatial frequency domain is as follows: the 
Fourier transform &f the interference fringe is 
convolved with the Fourier transform of the 
array of cone centers to yield the Fourier trans- 
form of the response of the mosaic. The result 
of this convolution can be seen in Fig. Z(A), 
which shows the frequency representation of the 
fringe in Fig. 1 sampled by a triangular lattice. 
The sampling operation corresponds to erecting 
a replica of the fringe transform at each of the 
delta functions in the transform of the mosaic. 
Solid points indicate the locations of the origi- 
nal delta functions in the mosaic transform. 
Circles indicate the first-order delta functions of 
the fringe spectrum, now replicated at each delta 
function in the mosaic spectrum. Solid lines 
have been drawn to connect the corresponding 
first-order spectra of each replica. 

Note, however, that exactly the same spec- 
trum would result had the mosaic sampled the 
fringe whose corresponding first-order delta 
functions are linked by the dotted lines shown 
in Fig. Z(B). This fringe has a much higher 
spatial frequency and a different orientation, 
but produces an identical spectrum following 
the sampling operation. These figures illustrate 
aliasing, the ambiguity introduced by sampling. 
This pair of fringes of different orientation and 
spatial frequency are members of an equivalence 

*However, the precise boundaries of the window actually 
employed by the visual system have yet to be carefully 
mapped, and the window proposed here is probably 
inaccurate in several ways. For example, the window has 
an abrupt edge that neglects the gradual neural loss in 
interference fringe contrast sensitivity with increasing 
spatial frequency (Williams, 1985b). Furthermore, there 
is no evidence that the window has a hexagonal shape. 
Indeed, the existence of the oblique effect suggests that 
the true shape is better approximated by a diamond than 
a hexagon. There is no unique window for recon- 
structing signals that have been sampled in two dimen- 
sions (Peterson and Middleton, 1962). The hexagonal 
window was chosen because it is optimal for recon- 
structing signals with isotropic two-dimensional power 
spectra and because an array of such windows com- 
pletely tiles the frequency plane. For the present purpose 
of mapping the fovea1 cone mosaic, the behavior of the 
window at its edges is of little consequence. This is 
because the psychophysical observations described later 
in the paper that support the model are strictly supra- 
threshold, and involve relatively low spatial frequency 
moire patterns that fall near the center of the window 
rather than at its edges. 

class, all members of which produce identical 
intensity distributions at the lattice points. 

Ultimately, the post-receptoral visual system 
adopts an interpretation of this ambiguous dis- 
tribution of quantum catches. The rule for 
selecting an interpretation is incorporated in the 
model with a “window of visibility” that 
specifies the area in the two-dimensional spatial 
frequency domain to which the post-receptoral 
visual system is sensitive. The specific window 
chosen in the model implements the assumption 
made here that the visual system always adopts 
the lowest spatial frequency interpretation of 
the stimulus. Observations of spatial frequencies 
near the fovea1 Nyquist limit (Williams, 1985b) 
suggest that this rule is probably roughly cor- 
rect.* This rule is to be expected since, under 
everyday viewing conditions, diffraction and 
aberrations in the optics of the eye confine 
visual experience to low spatial frequencies. The 
window that exactly captures the rule is a 
hexagonal-shaped area, centered on the origin, 
whose boundaries lie nearest the origin at a 
spatial frequency of 1/2r (Mersereau, 1979). 
This window is shown as the shaded area in 
Fig. 2(C). The edge of the window corresponds 
to the Nyquist limit of one-dimensional sam- 
pling theory. 

The window of visibility, or zero-order win- 
dow, is surrounded by six first-order windows, 
one centered on each of the first-order delta 
functions of the mosaic spectrum. To under- 
stand aliasing in the framework of this model, 
first consider fringes whose first-order spectra 
fall within the window. They have high fre- 
quency aliases, but they are not passed by the 
window, which passes only the original low 
frequency fringe. However, high spatial fre- 
quencies whose first-order spectra lie outside the 
zero-order window will produce delta functions 
that fall within the window. These delta func- 
tions will be reconstructed as a low frequency 
alias. 

Basis for the psychophysical procedure 

The’modei above assumes that the cone mo- 
asic is a crystalline lattice. It is only under these 
conditions that the moire patterns produced by 
the mosaic should be regular. A disordered 
mosaic does not have a discrete amplitude spec- 
trum: the delta functions in the mosaic spectrum 
become blurred with small amounts of disorder. 
This blur in turn leads to distortion in the moire 
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patterns that are produced, since the moirC 
patterns have blurred spectra as well. Support 
for a crystalline lattice structure of the cone 
point pattern may be obtained from experi- 
mental evidence for the existence of these delta 
functions, which would imply substantial regu- 
larity in the fovea? cone mosaic. The model 
above assumes that the cone mosaic is not only 
regular but also forms a triangular crystalline 
lattice. This leads to specific predictions about 
the behavior of moire patterns that would be 
different if, for example, the cones were packed 
in a rectangular array. 

The coordinates of the six first-order delta 
functions in the spectrum of the triangular 
lattice contain rich information about the mo- 
saic itself. The distance between these delta 
functions and the origin specify the spacing 
between rows of cones in the mosaic. The 
number of first-order delta functions and the 
angles between them with respect to the origin 
specify the packing geometry. If the coordinates 
in the frequency plane of these delta functions 
could be identified with a psychophysical pro- 
cedure, then the spacing and packing geometry 
of the mosaic could be characterized. 

One way to identify these coordinates is to 
find those interference fringes that produce what 
will be called a moirk zero. A moirC zero occurs 
when a fringe of some orientation and spatial 
frequency produces a moir6 pattern of zero 
spatial frequency. The Appendix derives a quan- 
titative description of the dependence of the 
spatial frequency of the alias on the spatial 
frequency and orientation of the interference 
fringe stimulus. Only the essential intuition is 
described here. 

Consider an interference fringe whose 

---__- 

*This analysis ignores the possib%ty of moirk zeroes pro- 
duced by fringes whose spectra fall on higher-order delta 
functions of the mosaic spectrum. We have thus far been 
unable to muster any compelling psychophysical evi- 
dence for the existence of such higher-order aliases, 
probably because the required spatial frequency of the 
stimulus is so high that it is severely demodulated. Low 
pass filtering by the cone aperture, and perhaps the high 
temporal frequency of the alias produced by eye tremor, 
probably obliterate this effect. As will be seen below, the 
first mairk zero occurs at 112c/deg, averaged across 
observers, at the foveai center. The lowest spatial fre- 
quency that could produce a moirk zero from the 
second-order ring of windows would be 194 c/deg, which 
is well beyond the highest frequencies at which aliasing 
has been reliably observed (150-160 c/deg, Williams, 
1985a). 

first-order spectra fall somewhere beyond ttltb 
zero-order window and within the ring t.tt 

first-order windows in Fig. 2. This fringe wiri 
produce an alias that wit? pass through the 
zero-order window. It can be seen from rhc 
geometry that a moir6 zero will occur anytime 
the first-order delta functions in the fringe spec- 
trum fall on the first-order delta functions of the 
mosaic spectrum. Interference fringes whose 
spectra do not cause this to happen will always 
produce an alias of spatial frequency lligher 
than zero. For the triangular lattice imple- 
mented in the model, a moirt5 zero can occur 
only for a fringe of a fixed spatial frequency, 
corresponding to the reciprocal of the spacing 
between rows of cones in the lattice, i/r.* In 
addition, a moirt zero can occur only if the 
fringe is oriented at one of three orientations 
relative to the lattice. That is, the fringe musi be 
oriented parallel to one of the three cardinal 
axes of the triangular lattice. 

The behavior of the moire zeroes described 
above for a triangular lattice is restated below 
in the form of two predictions. The reason for 
casting the predictions in this form is that the 
two predictions are tested separatefy with psy- 
chophysical experiments described in Sections II 
and III below. 

(1) The apparent spatialfrequency of the m&r& 
pattern will be lowest when the period C$ the 
fringe equals the spacing between rows qf cones. 
Strictly speaking, the model predicts that a 

moir6 zero will occur when the period of the 
fringe equals the spacing between rows of cones 
only if the fringe is oriented parallel to rows of 
cones that form a triangular lattice. However, 
the argument is made in the Appendix that this 
prediction should be approximately correct re- 
gardless of the orientation of the interference 
fringe relative to the mosaic. 

(2) v the period of a jkinge equals the spacing 
between rows of cones in a triangular lattice, then 
a m&t! zero will occur at three orientations ofthe 
fringe separated bv @deg. These orientations 
will correspond to the cardinal axes of the lattice. 
Following a description of the methodology 
common to all the experiments, Section II pro- 
vides a test of the first prediction of the model 
by securing psychophysical estimates of cone 
spacing across the central fovea for comparison 
with anatomical measurements. The second pre- 
diction is tested in Section III, and allows 
psychophysical measurement of the packing 
geometry and orientation of the mosaic at the 
fovea1 center. 
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All experiments described in this paper were 
performed with a computer-controlled laser in- 
terferometer described by Williams (1985a). The 
source was a 632.8 nm, helium-neon laser. 
Fringe spatial frequency was controlled by vary- 
ing the separation of a pair of coherent point 
sources imaged near the entrance pupil of the 
eye. The point sources were always sym- 
metrically placed relative to the Stiles-Crawford 
maximum in the entrance pupil. Fringe orien- 
tation was controlled by a reversion prism 
placed just behind the field stop that was conju- 
gate with the observer’s retina. 

Interference fringes were introduced and re- 
moved from a uniform coherent field without 
changing the space-averaged retinal illu- 
minance. This was achieved with the pulse 
overlap technique described by Williams 
(1985a). Briefly, the two beams of the inter- 
ferometer were gated independently to produce 
pairs of light pulses 1 msec in duration 400 times 
a second. The temporal overlap of the pulse 
pairs could be manipulated by computer to 
modify the contrast of the fringe: no temporal 
overlap produced a fringe of zero contrast while 
complete overlap produced a unity contrast 
fringe of the same space-averaged illuminance. 
In all experiments, unity contrast interference 
fringes were presented for 5OOmsec every 
2.5 sec. The two second interstimulus interval 
reduced habituation effects that can occur with 
steady viewing, and also helped the observer 
distinguish between aliasing and the speckle that 
characterizes coherent fields imaged on the 
retina. Unless otherwise stated, the retinal illu- 
minance of the display was 2000 td. 

Dental impressions were used to maintain 
head position relative to the apparatus. The 
alignment procedure used is described by 
Williams (1985a). Prior to each expe~mental 
session, tropicamide (l/2%) was used to dilate 
each observer’s pupil (except in the case of one 
observer, N.C.). This helped to ensure that the 
point sources that formed the interference fringe 
were never occluded by the iris. Observers 
ranged in age from 20 to 37 years of age and had 
normal vision except for the correction of mild 
myopia and astigmatism. Observer ILK. is a 
protanope though his vision appears to be nor- 
mal in other respects. 

If. CONE SPACING ACROSS THE HUMAN FOVEA 

The first experiment employs the zebra stripe 

“.R 2R J--F 

patterns to measure cone spacing across the 
human fovea. The first prediction listed above 
suggested that, at any one retinal location, the 
observed moirt pattern should have the lowest 
spatial frequency when the interference fringe 
period equals the spacing between rows of 
cones, The Appendix establishes the predicted 
dependence of the moire spatial frequency on 
the spatial frequency of the interference fringe 
(Fig. 11). If observers are asked to adjust the 
spatial frequency of an interference fringe to 
make the moire pattern as coarse as possible at 
any retinal location, the reciprocal of their 
setting should agree with anatomical estimates 
of cone spacing. Williams (1985a) used this 
technique to measure cone spacing at the fovea1 
center, and found that the psychophysical ob- 
servations and anatomical measurements were 
in reasonable agreement. The present paper 
adapts this technique to measure cone spacing 
across the fovea as well as at the very center. 

Williams (1985a) reported that interference 
fringes that can just be resolved at the very 
center of the fovea produce an annular moire 
pattern surrounding the center of fixation, The 
appearance of this annulus is depicted in Fig. 3. 
The diameter of the annulus shrinks with in- 
creasing spatial frequency, finally collapsing to 
a disk of zebra stripes at a frequency of about 
90c/deg. The drawing fails to capture the low 
apparent contrast of the zebra stripes and the 

Fig. 3. Appearance of the annulus of zebra, stripes when it 
is matched in size to a faint bright ring (radius = 0.75 deg) 
superimposed on the test field. The drawing fails to capture 
the ~ntillating appearance of the zebra stripes, as well as 
their relatively low apparent contrast. The spatial frequency 
of the fringe was 75 c/deg and the orientation was horizontal 

(observer: N.C.). 
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fact that they scintillate rapidly in time, perhaps 
as a result of eye movements. One explanation 
for the annulus is that it marks the retinal locus 
at which the spacing between rows of cones 
matches the period of the interference fringe. 
The increase in the diameter of the annulus with 
decreasing spatial frequency would then reflect 
the increase in cone spacing with increasing 
eccentricity from the fovea1 center. 

Annulus matching technique 

The following technique was designed to ob- 
tain a quantitative test of this explanation. 
Observers viewed a dim ring of 630 nm light 
centered on a test field in which the interference 
fringe was periodically presented. The test field 
was at least 4deg in diameter. The ring was 
introduced via a beamsplitter and was produced 
by passing incoherent light from a tungsten 
source through a photographic transparency. 
The thickness of the ring was 2.5 min of arc. At 
the beginning of each run, the observer adjusted 
the intensity of this ring so that it was just bright 
enough to be clearly seen but dim enough not 
to interfere with the visibility of the zebra 
stripes. The observer’s task was to fixate the 
center of the ring and adjust the spatial fre- 
quency of the interference fringe till the coarsest 
zebra stripes fell on the ring, as shown in Fig. 
3. This was done for rings of different radii, 
providing a way of varying eccentricity from the 
fovea1 center. To make measurements at the 
fovea1 center, the ring was removed, and the 
observer was instructed to adjust the spatial 
frequency until the zebra stripes were coarsest at 
the point of fixation. The order in which rings 
of different radii were tested varied randomly 
within each session. Two settings were made for 
each ring before proceeding to the next ring. 

WILLIAMS 

Results 

Measurements were attempted on nine ob- 
servers in all. Table 1 shows the results for eight 
of these observers as well as details regarding 
the experimental conditions used. Reliable 
data could not be obtained on one observer. 
She reported a scintillating annulus outside 
the region over which she could resolve the 
fringes but could not identify wavy stripes 
within the annulus with certainty. A second 
observer (I.W.) had difficulty seeing zebra 
stripes with vertical interference fringes, though 
reliable data were obtained for horizontal 
fringes. Five observers readily identified the 
annulus of zebra stripes, and made settings with 
some confidence. For two additional observers 
(J.H. and R.S.), measurements were made only 
at the fovea1 center. No observer could make 
reliable measurements with this technique for 
retinal eccentricities larger than about 1.75 deg. 
For ring radii beyond about 1.25 deg, the zebra 
stripes begin to degenerate into a much less 

clearly defined annulus of two-dimensionai 
noise. 

The solid symbols in Fig. 4 show the mean 
fringe period yielding the coarsest zebra stripes 
for all eight observers as a function of fovea1 
eccentricity. The error bars represent F 1 SD 
based on variability between observers. Mea- 
surements were made at two different fringe 
orientations for five of the observers; the 
geometric mean of the settings for the two 
orientations was calculated to provide a single 
estimate of cone spacing at each eccentricity for 
each observer. 

These data are compared with the anatomical 
data of i)sterberg (1935), shown as the solid 
line, and the mean data (n = 4) of Curcio et nl. 
(1987), shown as the dotted line. Both sets of 

Table 1. Estimates of cone spacing in minutes of arc as a function of retinal eccentricity for the foveas of 8 observers 

Retinal eccentricity Fringe Retinal 

(deg) orientation illumination 
Observers 0.00 0.25 0.375 0.5 0.625 0.75 1.0 1.25 1.5 1.75 (deg) (td) N 

D.W. 0.53 0.56 0.65 0.74 0.79 0.84 0.97 1.08 1.16 1.33 0.90 2000 x 
M.D. 0.51 0.58 0.64 0.70 0.76 0.82 0.95 1.07 1.14 1.21 0,90 2000 8 
N.C. 0.52 0.58 0.63 0.67 0.75 0.82 0.89 1.01 1.07 1.16 0,90 500 x 
P.L. 0.51 0.59 0.65 0.74 0.81 0.84 0.93 1.01 -- - 0.90 2000 4 
K.K. 0.54 0.56 0.61 0.69 0.75 0.83 1.00 1.03 -- - 130,160 4000 4 
I.W. 0.53 0.55 0.59 0.70 0.77 0.84 - - - -- 90 2000 1 
R.S. 0.57 _ _ _ __ _ _ _ _ _ 90 2000 4 
J.H. 0.57 - - - _ _ - - - _.. 90 2000 2 

Mean 0.535 0.570 0.628 0.707 0.772 0.832 0.948 1.04 1.123 1.233 

Each table entry represents the mean measurement of cone spacing in minutes of arc for a single observer at a single retinal 
eccentricity. For observers in which two orientations were tested, the data for both orientations are averaged. N equals 
the total number of observations for each table entry. The convention for fringe orientation is 0 deg = verticai. increasing 
counterclockwise. The right eyes were tested of all observers except I.W. 
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/ 
I cn” 

0 1.0 20 
Retinat eccentricity (deg) 

Fig. 4. Solid symbols show the period of the interfe~n~ 
fringe that produced the coarsest zebra stripes at various 
retinal eccentricities within the fovea. Results are the mean 
of from 3 to 8 observers, depending on retinal eccentricity, 
whose individual results are tabulated in Table I. Error bars 
represent & 1 SD based on variability between observers. 
The solid line represents data from &e&erg (1935) in the 
temporal retinal meridian and the dotted hne represents the 
mean data for 4 eyes for both nasal and temporal meridia 

taken from Curcio et al. (1987). 

anatomical data were originally expressed in 
cones/mm2 whereas the psychophysical data are 
expressed in minutes of arc. To compare the 
data, the angular spacing between rows of 
cones, P, in min of arc was calculated from the 
anatomical measures of cone density, D, in 
cones/mm* by assuming triangular packing:* 

r = (60/0.291)(~3~2~)“*. 

There is reasonable agreement between the 
psychophysical observations and the measure- 
ments of osterberg. The mean data of Curcio 
et cd rise somewhat more slowly than the 
psychophysical data but the meaningfulness of 
this difference is difficult to evaluate due to the 
large individual differences reported by Cur&o 
et al. 

For clarity, the psychophysical data are com- 
pared with only two sets of human anatomical 

*The factor of 0.291 converts mm of retinal distance to 
degrees of visual angle, and is taken from LeGrand’s 
theoretical eye (Wyszecki and Stiles, 1982). The con- 
version factor varies from eye to eye and is not available 
for the specific eyes studied. Other representative values 
have been suggested such as about 0.27Smm/deg 
(Drasdo and Fowler, 1974). Adopting this value would 
raise all the anatomical data by about 6% relative to 
the psychophysical data, and improve the overall fit. 
t)sterberg’s tabulated data on cone spacing contain 
numerous errors that have been perpetuated in the 
literature. These errors can be resolved by com- 
paring t%terberg’s tables with his corresponding graphs 
(Rod&k, 1986). 

data in Fig. 4. However, recent measurements of 
cone spacing in the monkey (de Monasterio et 
al., 1985; Hirsch and Miller, 1987; and Ferry 
and Cowey, 1985) are also in good agreement 
with the psychophysical data though the angu- 
lar cone spacing is somewhat larger in the 
monkey largely as a result of the smaller axial 
length of monkey eyes. The psychophysical 
estimate of row spacing at the fovea1 center, 
0.535 min of arc, is also in close agreement with 
the human anatomical estimate of Miller (1979), 
which was 0.536 min of arc. Overall, the agree- 
ment supports the hypothesis that aliasing can 
provide a measure of cone spacing in the living 
human eye. 

There is evidence for an anisotropy in cone 

spacing in those observers for which spacing 
was measured for more than one orientation. 

Figure 5 shows individual data for four observ- 

ers for which measurements were obtained for 
both horizontal (open symbols) and vertical 
gratings (solid symbols). Curiously, the fringe 
period yielding the coarsest zebra stripes is 
consistently larger when the fringe is vertical 
than when it is horizontal. This effect is present 
in all the observers though observer P.L. shows 
it less strongly than the others. The fringe period 
yielding the coarsest zebra stripes averaged 
across retinal locations is 17.4, 2.5, 19.5, and 
14.8% larger for vertical than horizontal fringes 
for observers D.W., P.L., M.D., and N.C. 
respectively. 

Additional measurements of this phenom- 
enon were obtained on observer D.W. with a 

i1.5r MD r NC 

Retinal eccentricity tdeg) 

Fig. 5. Comparison of annulus matching data for horizontal 
(open symbols) and vertical (solid symbols) interference 
fringes for four observers, showing evidence for a local 
anisotropy in cone spacing. Error bars represent f I SEM 

based on variability between runs. 
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established in the Appendix (Fig. 12). An Inter 
ference fringe of about 112 c/deg corresponds :c) 
the fundamental frequency of the mosaic ,.u the 
fovea1 center, as determined in the prGous 

experiment. If this fringe is rotated, the rnoirti 

spatial frequency should oscillate between ii. 
corresponding to a moirk zero. and 58 cldeg 
with a period of 60 deg. 

This prediction is simulated in Fig. 7 with 
a technique introduced by Yellott (1982). The 
fovea1 section used for the simulation was pre- 
pared by William Miller and Joy Hirsch at Yale 
University. Dots in each panel represent the 
locations of cone centers within the central 
0.5 deg of the monkey fovea. Each mosaic is 
sampling a square wave grating whose period 
equals the spacing between rows of cones at the 
fovea1 center. The effects of six different orien- 
tations are shown, spanning the range of poss- 
ible orientations in 30 deg steps. The upper row 
of sampled gratings represent the three moirC 
zeroes corresponding to the cardinal axes of the 
lattice. The moire patterns in the lower row of 
sampled gratings are much higher in average 
spatial frequency, corresponding to conditions 
in which the stripes of the grating are oriented 
between cardinal axes. 

DW RIGHT EYE 

Fig. 6. Period of interference fringe producing the coarsest 
zebra stripes at an eccentricity of 0.75 deg, as a function of 
fringe orientation. The origin corresponds to a fringe period 
(and predicted cone spacing) of 0.5 min of arc, the perimeter 
corresponds to 1 .O min of arc. Since vertical fringes estimate 
the horizontal separation between cones and vice versa, the 
data imply that the horizontal cone separation is 1.16 times 
larger than the vertical cone separation in this observer. 
Error bars representing plus and minus one standard error 

of the mean are smaller than the data points. 

matching ring of radius, 0.75 deg. Two settings 
were made at each of 9 fringe orientations in 
20 deg steps from 0 to 180 deg. The symbols on 
the polar plot of Fig. 6 show the mean fringe 
period that produced the coarsest zebra stripes 
on the matching ring. The center of the plot 
corresponds to a fringe period of 0.5 min of arc, 
the perimeter corresponds to a fringe period of 
1 min of arc. The full range of possible stimulus 
orientations are covered in only 180, so that the 
360 deg polar plot exhibits obligatory 180 deg 
rotational symmetry. The data form a relatively 
smooth ellipse, with the major axis correspond- 
ing to vertical gratings. The aspect ratio of the 
ellipse is about 1.16. The implications of this 
anisotropy are treated in the Discussion, where 
it is argued that fovea1 cones in these observers 
must be more tightly packed in a vertical than 
a horizontal direction. 

III. PACKING ARRANGEMENT OF FOVEAL CONES 

The following experiments seek psycho- 
physical evidence for the packing geometry of 
cones by attempting to identify the cardinal axes 
of the mosaic at the point of fixation. The 
second prediction of the model of cone aliasing 
is that if the fringe spatial frequency is fixed at 
the mosaic fundamental frequency, a moiri zero 
should be encountered with every 60deg of 
fringe rotation. The predicted change in moir& 
spatial frequency with fringe orientation is 

Method 

Two psychophysical procedures were used to 
search for the fringe orientations that yielded 
moirt zeros. 

Rating Technique. Observers viewed a 2 deg 
coherent test field surrounded by an 8 deg equi- 
luminous annulus of incoherent 630 nm light. A 
crosshair, visible only in the annulus, was cen- 
tered on the test field. Its purpose was to aid 
fixation and to reduce torsional eye movements. 
The fringe spatial frequency was set at that 
frequency yielding the coarsest zebra stripes at 
the center of fixation. This frequency varied 
slightly from observer to observer, but fell 
within the range of 105-l 19 c/deg. The ob- 
server’s task on each trial was to rate the overall 
coarseness of the zebra stripes on a scale of 1 to 
10, with 10 representing the coarsest and 1 the 
finest. Observers were instructed to make their 
rating on the basis of the smallest area lying at 
the center of fixation to which they could direct 

their attention. Observers were allowed an un- 

limited number of fringe presentations upon 
which to base their rating. A fringe of a different 

orientation was presented on each trial. Fringes 
at eighteen orientations, spanning the range of 
possible orientations in 1Odeg steps, were 
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presented in random order within each run.* At 
least four ratings were obtained at each orien- 
tation for each eye tested. Both the left and right 
eyes of three observers were tested, as well as the 
right eyes of two additional observers. 

Orientation adjustment technique. The stimu- 
lus display was similar to that used in the rating 
technique. As before, the spatial frequency was 
fixed at the fundamental frequency of the mo- 
saic at the fovea1 center. Observers searched for 
a moire zero by adjusting the orientation of the 
interference fringe so that the spacing of zebra 
stripes was largest at the very center of the 
fovea. Fifty settings were made in a session. The 
left and right eyes of two observers were tested. 

Results 

Figure 8 shows the results of the rating tech- 
nique for all eyes tested. Fringe orientation is 
indicated around the circumference of each plot. 
The mean rating at any orientation is given by 
the distance of the data point from the origin. 
The circle at the center corresponds to the 
smallest permissible rating, 1, and the outer 
circle has a radius of 10, the highest permissible 
rating. Error bars represent f 1 SEM. The data 
points have been plotted only around the upper 
half of the 360 deg plot because 180 deg of 
stimulus rotation includes all possible fringe 
orientations. This gives the complete polar plot 
180 deg rotational symmetry. Moire zeroes 
should correspond to orientations where the 
ratings are highest, orientations between moire 
zeroes should produce low ratings. Triangular 
packing would predict moire zeroes every 60 
deg, or a 6 pointed “starfish” pattern in the plot. 

Figure 9 shows the results of the orientation 
adjustment technique. The 50 orientation set- 
tings made by each observer with each eye were 
tallied in 5 deg bins to yield a polar histogram. 
The ring at the center of the plot corresponds to 
zero settings per bin; the radius of the plot is 13 
settings per bin. The results of the rating tech- 
nique for these same eyes are plotted as dotted 
lines for comparison. 

*Observers could potentially deduce the true orientation of 

a fine interference fringe from an artifact produced by a 

refractive error. Refractive errors cause the retinal test 

fields arising from each point source in the pupil to fall 

slightly out of register. They are typically displaced 

slightly along a line perpendicular to the orientation of 
the fringe. Refractive errors and astigmatism were cor- 

rected with trial lenses to minimize this problem. At the 

end of the experiment, all observers except the author 

claimed that they had been unaware of the true orien- 

tation of the high frequency fringe on each trial. 

The data for some of the eyes, such as those 
of P.L. and D.W., reveal the clear signature of 
triangular packing. For these observers, a moire 
zero could be identified by a relatively coarse 
pattern of zebra stripes meandering across 
the fovea1 center. Orientations between moire 
zeroes were characterized either by very fine 
zebra stripes of low apparent contrast, or by a 
relative paucity of zebra stripes at the fovea1 
center. Under these conditions the fovea1 center 
had a flickering, desaturated appearance resem- 
bling the appearance of interference fringes 
at the fovea that are just above the resolution 
limit. It was usually the case that more coarse 
zebra stripes were visible in adjacent areas of the 
fovea, making it important for observers to 
make their judgements only with regard to the 
very center of the fovea. 

For other eyes, the six-armed starfish pattern 
is not as obvious from simple inspection, and a 
more elaborate analysis was employed to evalu- 
ate any 60deg periodicity. The amplitude and 
phase of the discrete Fourier series of each data 
set was computed. Due to the periodic nature of 
the data, and its obligatory 180 deg rotational 
symmetry, the only Fourier components that 
could appear in the data (in addition to a d.c. 
term) had periods of 180/n deg, where n is an 
integer greater than or equal to 1. In 6 of the 8 
eyes tested with the rating technique, the har- 
monic with the largest amplitude had a period 
of 60 deg. Even in the remaining two eyes 
(M.D., left eye and J.H., right eye), the 60deg 
harmonic had the second largest amplitude, 
with the 180 deg harmonic having the largest 
amplitude. The 60 deg harmonic was largest for 
all four of the eyes tested with the orientation 
adjustment technique. The phase of the 60 deg 
harmonic is indicated by the six arrows sur- 
rounding each plot in Figs 8 and 9. Note in Fig. 
9 that the two different techniques applied to the 
same eyes generally yield similar estimates of the 
orientation of the triangular mosaic. 

The 60 deg periodicity in these data originates 
in the observer’s visual system, and is not some 
peculiar artifact of the laser interferometer. The 
author verified this by repeating the rating 
technique while lying down on a tabletop with 
his bite bar rotated 90deg in its mount. The 
dotted line plotted in Fig. 8 for the right eye of 
D.W. shows the result: the arms of this starfish 
are interdigitated with those obtained with the 
observer upright, suggesting that the starfish has 
apparently rotated with the eye. This is consis- 
tent with the hypothesis that the effect arises in 
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Fig. 9. Results of the orientation adjustment technique to 
establish the orientation of the cone mosaic at the fovea1 
center. Left and right eyes of two observers are shown. 
Results of the rating technique from Fig. 8 on the same eyes 

are shown for comparison. 

the visual system and not the apparatus. Fur- 
thermore, the observer could identify the idio- 
syncratic pattern of zebra stripes for particular 
orientations, and these patterns were stable in 
retinal coordinates and not in apparatus coordi- 
nates as the head was rotated 90 deg. 

DISCUSSION 

The estimates of cone spacing obtained with 
the moire technique agree reasonably well with 
those obtained with conventional anatomical 
methods, which tends to validate both. The 
psychophysical data show less variability be- 
tween observers than the anatomical data of 
Curcio et al. (1987). The spacing between rows 
of cones at the fovea1 center for the 4 eyes 
studied by Curcio et al. ranged from about 0.39 
to 0.69 min of arc, whereas the range for the 8 
psychophysical observers was between 0.5 1 and 
0.57 min of arc. A better comparison of these 
two sets of data could be made if the axial 
length of the eyes were known to allow distance 
on the retina to be converted more accurately to 
visual angle. If fovea1 cone spacing in mm 

covaried with the eye’s axial length, some of the 
variability observed in the anatomical data 
would disappear when expressed in angular 
terms. On the other hand, the variability ob- 
served by Curcio et al. (1987) is largely confined 
to the fovea, whereas variations in axial length 
would have about the same impact at all eccen- 
tricities, arguing against this explanation. The 
population sampled in the two studies are likely 
to be different. Clearly more ambitious psycho- 
physical and anatomical studies on a larger 
number of eyes will have to be done to deter- 
mine the variability in cone spacing in the 
population at large. 

The agreement between psychophysical and 
anatomical estimates of cone spacing across the 
central fovea argues against competing pre- 
receptoral or post-receptoral explanations for 
the zebra stripes. An explanation in terms of 
cone aliasing is further strengthened by the 
identification of 60 deg symmetry in the pattern 
producing the zebra stripes. This makes it un- 
likely that the zebra stripes arise as a result of 
some optical effect of the neural tissue overlying 
the receptors, which lacks the necessary crys- 
talline structure. Aliasing at a higher stage in the 
visual system, such as at the array of ganglion 
cell receptive fields, is not required to explain 
the observations. This is consistent with anat- 
omical evidence that there are sufficient num- 
bers of ganglion cells to adequately sample the 
primate cone mosaic (Perry and Cowey, 1985). 

The appearance of the zebra stripe patterns 
are apparently quite stable over time. The au- 
thor has been unable to detect a change in the 
appearance of a horizontal fringe of 110 c/deg 
over a period of three years, as would be’ 
expected if the zebra stripe is a consequence of 
retinal anatomy. Observers quickly learned to 
recognize the zebra stripe patterns associated 
with a particular stimulus and often remarked 
that they recalled a particular pattern experi- 
enced during a previous experimental session. 
For a given fringe, the zebra stripes are proba- 
bly as idiosyncratic as a fingerprint. The appear- 
ance of the pattern is also stable with changes 
in the entry point of light in the pupil, except at 
large pupillary eccentricities where the apparent 
contrast is reduced. Changes in the wavelength 
of the fringe do not noticeably alter the form of 
the zebra stripes, provided the fringe spatial 
frequency and orientation is kept constant. The 
author has observed zebra stripes across most of 
the visible spectrum by using different laser 
sources; a helium-cadmium laser (442 nm), an 
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argon laser (488 and 514 nm), a dye laser 
(540-575 nm), and helium-neon (432.8 nm).* 

The 632.8 nm light used throughout the mea- 
surements reported here is absorbed only by the 
middle and long wavelength cones. and negli- 
gibly by the short wavelength cones. Thus, the 
estimates of cone spacing are based on only two 
of the three cone types in the human fovea. 
However, the short wavelength cones account 
for at most only 10% of the total cone popu- 
lation in the primate (Marc and Sperling, 1977; 
de Monasterio et al., 198.5). Simulations show 
that the psychophysical measure of cone spacing 
shot;ld be relatively immune to the absence of 
short wavelength cones. Lattices constructed 
from photographs of the primate fovea1 cone 
mosaic that have cones deleted suggest that 
removal of 10% of the cones does not obviously 
disrupt the visibility of the moir& zeroes. More 
importantly, it does not change the spatial 
frequency at which moire zeroes occur at all. 
Ahumada (1986) has demonstrated this last 
point with regard to the aliasing effects expected 
from the separate mosaics of middle and long 
wavelength cones. 

A minority of observers, such as the one who 
was dropped from the experiment to measure 
cone spacing, have been unable to observe the 
zebra stripes. These observers report the appear- 
ance of a rapidly flickering, desaturated patch 
centered on fixation just like the observers who 
resolve the zebra stripes. The size of this patch 
decreases with increasing spatial frequency. It is 
not clear what factors allow some observers to 
see the stripes and others not, though it may be 
related to individual differences in the amplitude 
of eye tremor which would tend to reduce the 
contrast of the zelrra stripes in some eyes more 
than others. Whatever the cause, it restricts the 
population of observers for which fovea1 topog- 
raphy can be mapped with this technique. 

Ideally, it would be desirable to identify moir& 
zeroes with two-alternative forced choice mea- 
surements of fringe contrast sensitivity, under 
the assumption that observers would be more 
sensitive to moire? zeroes than higher frequency 
aliases. However, forced choice detection pro- 
cedures, which have the advantage that they are 
criterion free, are inappropriate in this case. 
Attempts to use this technique were not success- 
ful because observers could detect the presence 

*Though the pattern of the zebra stripes is not altered, their 
apparent contrast is reduced with shorter wavelength 
fringes for reasons that are presently unclear. 

WILLIAMS 

of flicker and desaturation in the field regardless 
of the appearance of the zebra stripes them<elvcs. 

Local unisotropj~ in mne spacing 

In the four observers for which cone spacing 
measurements were made for both horizontal 
and vertical gratings, moir& zeroes at a particu- 
lar eccentricity required a spatial frequency that 
was about 14% higher on average for horizontal 
fringes than for vertical. The effect is most 
striking when observing a fine interference 
fringe of fixed spatial frequency whose orien- 
tation is changing smoothIy and continuously, 
The annulus of zebra stripes always remains 
roughly circular, but it oscillates in size. appear- 
ing largest when the fringe is horizontal and 
smallest when the fringe is vertical. 

On the face of it, the most likely explanation 
for this effect would be an optical one, in which 
the fringe magnification depended on its orien- 
tation. However, the obvious optical causes for 
such an anisotropy can be excluded. The appa- 
ratus had no measurable anisotropic magnifi- 
cation. Measurements of the spacing between 
the point sources at the pupil, made with a 
micrometer, confirmed that spatial frequency 
was independent of orientation within mea- 
surement error (less than 0.5%). Furthermore, 
the effect rotated with the observer when the 
fringe orientation was fixed and the observer’s 
head was rotated 90deg, confirming that it 
arises in the eye. 

Astigmatism in the eye’s anterior optics, 
which can make retinal magnification (and spa- 
tial frequency) dependent on fringe orientation 
(meridional aniseikonia), was not large enough 
to account for the effect. All the observers were 
mildly myopic and those with astigmatism were 
most myopic in approximately the horizontal 
meridian. Astigmatism was 1.5 D for D.W. and 
P.L., 0.25 for M.D. and virtually 0 for N.C. The 
amount of meridional aniseikonia expected 
from these amounts of astigmatism was calcu- 
lated by ray tracing through Le Grand’s full 
theoretical eye (Wyszecki and Stiles, 1982). 
These calculations showed that even the most 
severe asti~atism observed, applied to either 
the cornea or the lens wouId produce a 
magnification difference for vertical and hori- 
zontal fringes of less than 0.5%. This is far less 
than the meridional aniseikonia required to 
explain the 14% effect, averaged across all 
retinal locations for all four observers. The 
minimum amount of astigmatism at a single 
refractive surface in the eye required to explain 
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the effect would be 41 D, applied at the anterior 
surface of the cornea.* 

Furthermore, trial lens correction of the astig- 
matism for observer D.W. did not signifi~ntly 
change the magnitude of the effeet.t The refrac- 
tive effect of the fovea1 pit (Williams, 1980) is 
too small to account for the effect. Because of 
the relatively small difference in the index of 
refraction of the vitreous and retina and its 
proximity to the photoreceptor mosaic, the 
fovea1 pit might magnify the fovea1 image by 
one or perhaps 2% at most. Any asti~atism it 
might exhibit would be even smaller still. 

It is equally difficult to attribute the aniso- 
tropy to postreceptoral factors, such as under- 
sampling at a subsequent, anisotropic neural 
stage. All the evidence points to an origin for the 
zebra stripes in the cone mosaic (Williams, 
1985a), and indeed it is difficult to see how the 
cone mosaic could avoid aliasing under these 
conditions. At the appropriate spatial fre- 
quency, the cone mosaic inevitably generates a 
low frequency moire pattern that is easily passed 

_ ---.- 

*Lesser amounts of astigmatism would be required if there 
were an axial m~~lignment of the observer, such that the 
pair of point sources were not imaged at the nodal point 
of the eye. The effect of axial misalignment can be 
approximately calculated as follows. The magnification 
of an interference fringe is proportional to I -d/D, 
where d is the distance between the image of the point 
sources and the nodal point and D is the distance at 
which the eye is focused (Saieh, 1982). However, this 
effect is small as long as d cc D. For example, even if the 
misalignment were as much as - I cm, which is unlikely, 
14 diopters of asti~atism would be required to account 
for the effect. The relatively minor effect of misalignment 
was checked with the author’s eye, which is about 1.5 D 
myopic. The spatial frequency producing a moire zero at 
an eccentricity of 0.75 deg varied only about 5% over a 
range of + 3 cm misalignment of the pupil plane from 
the images of the point sources. 

tHowever, the absence of measurable astigmatism, such 
as in observer NC, does not necessarily demand the 
absence of meridional aniseikonia. It is possible that two 
or more of the four refracting surfaces in the eye’s 
anterior optics have astigmatism along perpendicular 
meridia such that they compensate for one another in 
power, removing astigmatism from the complete eye but 
still producing meridional aniseikonia. This possibility 
was explored in the theoretical eye by introducing 
astigmatism along one axis of the anterior surface of the 
cornea and along the perpendicular axis of the posterior 
surface of the lens so as to remove any anisotropy in 
refractive power but still preserve the overall refractive 
power of the original theoretical eye. This manipulation 
also required unrealistic amounts of astigmatism: 22 D 
of cornea1 astigmatism in addition to 11 diopters of 
lenticular astigmatism were needed to produce a merid- 
ional aniseikonia of 14%. 

by subsequent neural filtering. Any hypothetical 
subsequent stages with anisotropic sampling 
would be confronted by a pattern that has 
already been aliased to low frequencies, in 
which case the anisotropy of its sampling array 
would probably be irrelevant. 

These arguments against optical and post- 
receptoral explanations for the local anisotropy 
suggest that it probably reflects a difference in 
the spacing between cones measured in vertical 
and horizontal directions. Since vertical gratings 
provide a measure of the horizontal spacing 
between cones and vice versa, these results mean 
that there is a tendency for the spacing between 
cones to be slightly greater in a horizontal 
direction than a vertical direction at any retinal 
location within the fovea. 

The possibility of histological artifact makes 
it difficult to argue convincingly for or against 
the existence of this proposed packing aniso- 
tropy on anatomical grounds [though see de- 
Monasterio et al. (1985) Fig. l(e)]. It is unclear 
whether the local anisotropy can be attributed 
to stresses on the adult fovea or to migrational 
forces responsible for the development of the 
fovea (Hendrickson and Yuodelis, 1984), which 
could be stronger in the vertical direction than 
horizontally. 

This anisotropy is not a natural consequence 
of a triangular packing arrangement of recep- 
tors. The dependence of the fringe spatial fre- 
quency producing the lowest frequency moire 
pattern on fringe orientation should have a 
periodicity of 60 deg, as shown in the Appendix. 
The data of Fig. 6, on the other hand, show only 
180 deg periodicity. The anisotropy can be seen 
at many locations in the fovea despite the 
likelihood that the local lattice orientations 
are different in these different locations due to 
disorder. 

The local anisotropy is distinct from a merid- 
ional anisotropy in the density of cones with 
eccentricity from the fovea1 center, which was 
rarely observed, at least at smaller eccentricities 
than 1.75 deg. All observers but one described 
the annular pattern of zebra stripes as ragged 
but essentially circular. The shape of the an- 
nulus is a direct visualization of an “isospacing” 
contour, and its predominantly circular shape is 
consistent with an isotropic dist~bution of cone 
spacing about the fovea1 center. This finding 
justified the use of a psychophysical procedure 
that was insensitive to meridional differences. 
The measurements thus obtained can be consid- 
ered to represent an average of the cone spacing 
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along all meridia. Observer N.C. reported that 
the annulus was slightly elliptical, with the long 
axis of the ellipse lying in a horizontal direction. 
On the whole, these observations are consistent 
with anatomical data (Curcio et al., 1987) for 
which some eyes showed elliptical isodensity 
contours oriented as in the eye of N.C. and 
while others showed circular contours, 

Orientation of the cone lattice at the fovea1 center 

On the whole, the orientation rating and 
adjustment techniques applied to the fovea1 
center provided strong evidence for the 60deg 
symmetry predicted by the triangular lattice in 
the aliasing model.* There is no compelling 
evidence in the data for rectangular packing 
which would have produced only 2 moire zeroes 
in 180 degs rather than 3. 

The behavior of the moire zeroes with fringe 
orientation provides a method to estimate the 
orientation of the lattice in the living fovea. The 
orientation at the fovea1 center was estimated 
from the phase of the 60deg harmonic in the 
data of Figs 8 and 9. It is of some interest to 
know whether the lattice has the same orien- 
tation at the fovea1 center across individuals, or 
across eyes within the same individual. The data 
obtained so far have a tendency to cluster both 
across and within observers, but an insufficient 
number of observers have been tested to build 
a statistical case that it is nonrandom. For 
example, the probability that the distribution of 
cardinal axes of all eight eyes determined with 
the rating technique arose from a random distri- 
bution is 11% (Rayleigh test, Batschelet, 1981). 

Disorder 

The moire technique for measuring cone 
spacing described here requires a reasonably 
regular cone lattice. At retinal eccentricities 
beyond 1.75 deg, the annulus of zebra stripes 
cannot be seen at any spatial frequency. Just 
outside the fovea, observers report the appear- 
ance of 2-dimensional spatial noise when view- 
ing fringes above the resolution limit (Williams, 
1985a). This noise arises from aliasing by the 
irregular mosaic of extrafoveal cones, and a 

*One would predict that the local anisotropy described 
above would distort the triangular packing of cones so 
that the angles formed between the neighbors of a given 
cone would not all equal 60 deg. Unfortunately, the 
present data do not test this prediction because the local 
anisotropy is not very large at the fovea1 center for any 
of the observers for which the orientation of the lattice 
was measured. 

different psychophysical procedure IS requirecf 
to extract estimates of average cone spacing 
from it (Coletta and Williams, 1987). The de- 
generation of zebra stripes into spatial noise 
with increasing eccentricity is consistent with 
anatomical measurements of disorder in the 
primate mosaic by Hirsch and Miller (1987). 
They show that the disorder begins to increase 
rather abruptly at an eccentricity of about 
l-l.5 deg, increasing more slowly at about 
2-2.5 deg. It is possible that this disorder reflects 
the intrusion of rods between the cones. 

Even at the fovea1 center, the data for some 
of the eyes do not show 60deg periodicity as 
clearly as others. For example, the zebra stripe 
pattern is equally visible in the author’s two 
eyes, but the pattern changes with orientation in 
a much more regular fashion in the right eye 
than the left. The reason for this difference 
probably has more to do with disorder in the 
fovea1 lattice than with the insensitivity of the 
psychophysical techniques. In many instances 
the irregularities in the data are repeatable from 
day to day. These deviations probably reveal the 
presence of permanent faults and distortions in 

the cone mosaic. The tortuousity of the zebra 
stripes suggests that the cardinal axes of the 
triangular array meander across the fovea, and 
that there is no single set of cardinal axes for the 
central retina. 

Unfortunately, these subjective observations 
do not lend themselves readily to a quantitative 
measure of disorder in the lattice. However, 
they are qualitatively consistent with the disor- 
der seen in all anatomical specimens of the 
primate fovea (e.g. Borwein et ul., 1980; Hirsch 
and Hylton, 1984; Ahnelt et al., 1987; Hirsch 
and Miller, 1987). Ahnelt et al. (1987) has 
suggested that disorder often arises because of 
the presence of a subclass of cone with a larger 
inner segment. These cones are often sur- 
rounded by seven instead of the usual six neigh- 
bors. This distortion gives rise to a local change 
in the orientation of the lattice. Qualitative 
though they may be, the psychophysical obser- 
vations have the advantage over anatomical 
observations that they are not subject to histo- 
logical insult, confirming that disorder charac- 
terizes the intact living fovea. 

It is clear that the crystalline triangular lattice 
described in the fovea1 aliasing model is appro- 
priate only locally, over distances of perhaps 
5-15 min of arc at the fovea1 center. The simu- 
lation in Fig. 7 provides some indication of the 
“coherence length” of the primate fovea1 lattice. 
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It diminishes rapidly with increasing eccentricity 
as rods intrude. Nonetheless, the fovea1 cone 
mosaic is sufficiently similar to a regular trian- 
gular lattice to allow measurement of the spac- 
ing and orientation of the cones in the living 
human eye. 
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APPENDIX 

Moirk patterns formed between an inlerference fringe and a 

triangular sampling array 

This appendix describes the components of the fovea1 
aliasing model in quantitative terms. The effect of the spatial 
frequency and orientation of an interference fringe on the 
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spatial frequency of its alias is derived for a perfect trian- the cone aperture is not severe enough to obscure the molrr 
gular array. zeroes upon which the psychophysical techniques rest. ‘Then* 

Interference fringes. The spatial intensity distribution of is experimental evidence from Byram (1947) and William? 
an interference fringe, g(x,y), is given by (1985a) that aliasing is visible at frequencies of 150 c:tieg OF 

g(x,y)= 1 +cos2n(v,x +oOJJ). (Al) 

The spatial frequency domain description of the stimulus, 
G(v,o), can be expressed as 

G(v, 0) = 6(v, 0) + 1/2[6(v - “0, w - 00) 

+ 6(v + vO, o + oO)] (A2) 

where 6 represents the delta function. The distance from the 
origin of the first-order delta functions specifies the fringe 
spatial frequency, f, given by 

s = J(v; + a:,. (A3) 

The fringe orientation, 0, is given by 

0 = tan-’ (o&J. (A4) 

The lattice of cone centers. The triangular lattice of cone 
centers, m(x, y) is described by 

x 6[x - r(m + n), y - r(m - n)/,/3]. (AS) 

For simplicity, we assume an infinite array of receptors with 
the essential properties of the finite lattice at the fovea1 
center. Its Fourier transform, M(v, o), also consists of a 
triangular lattice of delta functions 

M(v,w)= f f 
m=-m”=__l 

x 6[v - (m + n)/2r, 0 - J3(m - n)/2r]. (A6) 

Let the Fourier transform of the cone aperture be defined 
by the function A(v,w) whose behavior need not be pre- 
cisely specified for the moment. The spatial frequency 
representation of the response. of the mosaic, R(v, w). when 
an interference fringe is imaged upon it is 

R(v, o) = G(v, o)A(v, w)*M(v, w) (A7) 

where * denotes convolution. 
Substituting the expressions for M(v, w) from equation 

(A6) and simplifying, we can write 

x {A(O,O)[a(v -(m +n)/2r,o -J3(m -n)/2r)] 

+ A (vo, wo)/2[S(v - (m + n)/2r - vo, w 

- JXm - n)P) - wJ1 

+A(--vO, -0,)/2[6(v-(m+n)/2r+v,,o 

- J3(m - n)/2r) + wd} 648) 

This expression describes the spectrum of an interference 
fringe of arbitrary spatial frequency and orientation after it 
has been sampled by a triangular lattice. In addition, the 
heights of the delta functions in the spectrum have been 
attenuated by the low pass filtering effects of the cone 
aperture. That is, the contrast of the alias will be reduced 
by the cone aperture. Fortunately, the demodulation due to 

more at the fovea1 center, which is well above the first 
harmonic of the fovea1 cone mosaic (about I 12 cideg). Since 
the spacing between cones increases faster than the cone 
aperture with increasing eccentricity. demodulation by Ihr 
cone aperture is likely to pose an even less severe imped 
iment to the identification of moire zeroes outside the fovea1 
center. 

Let the window of visibility implemented in the model be 
@‘(v, 0). We can define the window as follows: 

if Iv1 + d? 1~1 < l;r and Jv! < 1,2r. (AY) 

then W(v. (u) = I otherwise W(V. cI,) = o 

To evaluate the output of the model, we need to pass the 
sampled spectrum described by Equation (8) through the 
window of visibility. This amounts to retaining all delta 
functions that fail within the boundaries of the window, and 
eliminating all others. That is, we multiply the window by 
the spectral response of the cone mosaic. Let the spatial 
frequency representation of the output of the model be 
O(v, 0). Then 

O(v, w) = R(v. w)W(v. 0). (A It)) 

The preceding description of the model produces an 
output for any sinusoidal grating of arbitrary spatial fre- 
quency and orientation. Below, a more convenient formula 
is derived for predicting the behavior of moiti patterns for 
a restricted set of input stimuli that correspond to those used 
in the psychophysical observations. Consider only those 
aliases formed by fringes whose first-order spectra lie within 
a single pair of first-order windows opposite one another 
with respect to the origin (see Fig. 2). The six-fold rotational 
symmetry of the mosaic transform and associated windows 
implies that the behavior of the alias will simply repeat itself 
for fringe spectra falling within either of the other two pairs 
of windows. Furthermore, I evaluate the behavior for only 
one of the two first-order delta functions in the fringe 
spectrum. The location of only one of these delta functions 
is sufficient to describe the spatial frequency and orientation 
of the fringe because of the two-fold rotational symmetry of 
the fringe spectrum. Thus the problem can be reduced to 
considering the positions of a delta function within a single 
first-order window. 

Figure 10 shows a portion of the sampled spectrum 
plotted in Fig. 2. The hexagonal cell on the left corresponds 
to the zero-order window. The cell on the right corresponds 
to a single first-order window. Let the coordinates in the 
frequency plane of the fringe delta function be (v,,, w”). Let 
the coordinates in the frequency plane of the alias delta 
function be (v,, 0,). Defining the coordinates of the alias 
delta function in terms of the coordinates of the fringe delta 
function, we have 

v,=ljr-v, 

and 

Q, = -<Ug. 

Thus the moire frequency, f,, is given by 

f:=[(l/r -v,)‘+o~]. 

Note that this is simply the equation for a circle, whose 
center has been translated to the coordinates of the center 
of the first-order window. That is, with the constraint that 
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Fig. 10. Diagram of the zero-order window of visibility (left 
hexagon) and one of the first order windows (right hexa- 
gon), illustrating the geometry allowing the spatial fre- 
quency of the alias, f,, to be predicted from the spatial 
frequency, j, and orientation, 8, of the interference fringe. 
The fundamental frequency of the mosaic, i/r, is shown as 
is the Nyquist limit from one-dimensional sampling theory, 

1/2r. 

the first-order delta function of the fringe spectrum fails 
within the first-order window, the moir6 frequency is deter- 
mined by the distance of the fringe delta function from the 
first-order delta function of the mosiac spectrum. Note also 
that when w,, is equal to zero, the expression for the moiti 
frequency reduces to 

f, = l/r -LY (A14) 

This is the expression for aiiasing in one dimension, and 
yields the familiar Nyquist limit of 1/2r when the frequency 
of the alias, f., and the signal, &, are equal. 

It is convenient to express equation (13) in terms of the 
spatial frequency, f, and orientation, 8, of the input fringe 
instead of the coordinates of one of its first order delta 

functions in the frequency plane. Thus we have 

f: = (I/r -fcos $)* + (fsin 6)2. (Al9 

Recall that this describes the alias spatiat frequency for an 
input frequency whose first-order delta functions fail within 
a pair of first-order windows opposite each other with 
respect to the origin. Because there are three such pairs in 
the frequency plane, the function must repeat itself with an 
angular periodicity of 60 deg. 

Dependence of cone spacing estimate on fringe orientalion 

Figure 11 shows the dependence of the spatial frequency 
produced by the model on the spatial frequency of the 
original interference fringe. The different curves describe the 
performance of the model for various fringe orientations. A 
fringe orientation of Odeg corresponds to the condition 
where the fringe is parallel to a cardinal axes of the mosaic. 
In this case the output spatial frequency is pro~rtional to 
the input spatial frequency up to the Nyquist limit, 1/2r. At 
higher spatial frequencies, aliasing appears; the output 
spatial frequency declines to zero at a spatial frequency of 
l/r, and increases again thereafter. For this particular 
orientation, a moir6 zero can be achieved, and the spatial 
frequency at which it occurs is the reciprocal of the spacing 
between rows of cones in the mosaic. At other orientations 
that do not correspond to cardinal axes, however, the 
output spatial frequency never reaches zero, although it 
does pass through a local minimum (indicated by black dots 

E , 
J 

3/a 

Input spatial frequency (fl 

Fig. 11. The output spatial frequency predicted by the model 
of fovea1 aiiasing as a function of the input spatial frequency 
of the interference fringe. The parameter for the various 
curves is the orientation of the input fringe. When the fringe 
is oriented parallel to a cardinal axis of the mosaic (0 deg 
curve) a moire zero occurs for an input frequency of I/r. The 
dotted line indicates bow the coarsest moir& pattern shifts 
slightly toward lower input frequencies with progressive 

misalignment of the fringe orientation. 

in the figure). This local minimum shifts toward lower input 
frequencies, the larger the mismatch between fringe orien- 
tation and a lattice cardinal axis. 

The psy~hophysi~l m~surements of cone spacing were 
made before the cardinal axes of the mosaic were estab- 
lished, and were therefore not typically made for fringe 
orientations that corresponded to the cone cardinal axes. 
The model suggests that, in principle, the technique could 
overestimate cone spacing when the fringe is not aligned 
with the cardinal axis of the mosaic. The model predicts that 
the largest error would be caused by a 30deg mismatch in 
fringe orientation and would be about 13%. 

The fo~Io~ng arguments suggest that in practice this 
effect is considerably less than 13%. First of ail, the average 
error assuming a random fringe orientation relative to the 
mosaic, would be less than half the maximum error, or 
about 5%. Furthermore, the maximum possible mismatch 
in orientation produces a minimum moi& frequency at very 
high spatial frequencies, near 60 c/deg at the fovea1 center. 
These high spatial frequency aliases would be difficult to see, 
and probably do not contribute much to the psychophysical 
judgment. Irregularities in the t~ang~ar lattice imply reia- 
tively local changes in the lattice orientation. This means 
that the fringe is likely to be appropriately aligned with the 
mosaic somewhere within a relatively small retinal region. 

An empirical check that fringe orientation did not sub- 
stantially overestimate cone spacing was made as follows. 
Two observers (K.K. and D.W.) adjusted the spatial fre- 
quency of an interference fringe to minimize the frequency 

Input onentation (deg) 

Fig. 12. The output spatial frequency predicted by the model 
of fovea1 aiiasing as a function of the input orientation of 
the interference fringe. The parameter for different curves is 
the input fringe spatial frequency. When the fringe equals 
the fundamental frequency of the mosaic, l/r, moiti zeroes 
occur every 60&g, whenever the fringe becomes aligned 

with the rows of cones in the triangular lattice. 
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of the alias at the fovea1 center when the fringe was oriented 
along each of the three cardinal axes, and when it was 
oriented between each of the three axes. The mean estimate 
of cone spacing was 4.8% less in the off-axis that the on-axis 
condition, which is the expected direction. However, the two 
conditions were not significantly different (two-tailed r-test, 
a - 0.10). 

Dependence of lattice orientation estimate on fringe spatial 
frequency 

Figure I2 shows how the output spatial frequency of the 
model depends on the orientation of the input fringe, where 
the spatial frequency of the input fringe is a parameter for 
the different curves. If input spatial frequencies below the 
Nyquist frequency had been plotted, they would appear as 

horizontal lines in this plot, since they would be ;,(:I uratei> 
reconstructed by the model. All the curves art‘ to: ~r~pur 

spatial frequencies that are undersampled by the trrangular 
lattice, show that the behavior of the moire patterns c:tn by 
seen. In each case, the output spatial frequency c~crllatet a\ 
a function of input fringe orientation. with it per;od ~:i 
60 deg. This periodicity has the largest amplitude when the 
fringe spatial frequency equals the reciprocal of the spacing 
between rows in the mosaic. In this particular case. the 
moire pattern reaches zero spatial frequency, creating it 
moire zero every 60 deg. These predictions would resemble 
a 6 pointed starfish if plotted in polar coordinate?. Errors 
in the estimate of row spacing have no effect ctn the estimate 
of the o~entation of the lattice since the ~~rientat~on prrttluc- 

ing the minimum output frequency always corresponds to a 
cardinal axis. 


