David R. Williams

David Williams

William G. Allyn Chair of Medical Optics
Director, Center for Visual Science
Professor, The Institute of Optics, Departments of Ophthalmology, Biomedical Engineering, and Brain & Cognitive Sciences
University of Rochester

Box 319
Rochester, NY 14627
Office: Medical Center G-4107
Telephone: (585) 275-8672
Email:
Download CV (PDF)

Williams received his Ph.D. from the University of California, San Diego in 1979. He was a postdoctoral fellow at Bell Laboratories, Murray Hill in 1980 and joined the University of Rochester in 1981, where he is William G. Allyn Professor of Medical Optics in the Institute of Optics. For nearly 3 decades, Williams has served as Director of Rochester's Center for Visual Science.

Williams' research program marshals the latest optical technology arising from fields such as microscopy and astronomy to address questions about the fundamental limits of human vision as well as the causes of retinal disease. Using interference fringes applied to the retina, he demonstrated the existence of aliasing by the human foveal cone mosaic, clarifying how the discrete sampling properties of the eye impact human visual resolution. His research team demonstrated the first adaptive optics system for the eye, showing that vision can be improved beyond that provided by conventional spectacles. This work lead to wavefront-guided refractive surgery used throughout the world today. His group also demonstrated the first closed-loop adaptive optics ophthalmoscope, which is now widely used to study the normal and diseased retina of the living eye at a microscopic spatial scale. Williams, in close collaboration with William Merigan and Juliette McGregor, has more recently developed a method to optically record from retinal ganglion cells in the living primate eye. Moreover, the team has also demonstrated the ability to optogenetically restore ganglion cell function in the intact primate. These methods together establish a two way communication link with the primate retina, which they are currently exploiting to understand retinal basis for foveal vision as well as to develop an optogenetic approach to restoring vision in the blind.

Williams is a Fellow of the Optical Society of America, the American Association for the Advancement of Science, and the Association for Research in Vision and Ophthalmology. Awards he has received include the OSA Edgar G. Tillyer Award in 1998, the Association for Research in Vision and Ophthalmology's Friedenwald Award in 2006, the Bressler Prize from the Jewish Guild for the Blind in 2007, the Champalimaud Vision Award in 2012, the Beckman Argyros Award from the Arnold and Mabel Beckman Foundation in 2015, and the Sigma Xi Procter Award in 2015. He was elected to the National Academy of Sciences in 2014.

Selected Publications

  • McGregor JE, Godat T, Dhakal KR, Parkins K, Strazzeri JM, Bateman BA, Fischer WS, Williams DR, Merigan WH (2020). Optogenetic restoration of retinal ganglion cell activity in the living primate. Nature Communications 11(1), 1703. PDF
  • Guevara-Torres A, Williams DR, Schallek J (2020). Origin of cell contrast in offset aperture adaptive optics ophthalmoscopy. Optics Letters 45(4), 840-843. PDF
  • McGregor JE, Williams DR, Merigan WH (2019). Functional Assessment of Vision Restoration. Adv Exp Med Biol. 1185, 145-149. PDF
  • McGregor JE, Yin L, Yang Q, Godat T, Huynh KT, Zhang J, Williams DR, Merigan WH (2018). Functional architecture of the foveola revealed in the living primate. PLoS One 13(11):e0207102. PDF
  • Rossi, EA., Granger, CE., Sharma, R., Yang, Q., Saito, K., Schwarz, C., Walters, S., Nozato, K., Zhang, J., Kawakami, T., Fischer, W., Latchney, LR., Hunter, JJ., Chung, MM., Williams, DR. Imaging individual neurons in the retinal ganglion cell layer of the livin
  • Rossi EA, Granger CE, Sharma R, Yang Q, Saito K, Schwarz C, Walters S, Nozato K, Zhang J, Kawakami T, Fischer W, Latchney LR, Hunter JJ, Chung MM, & Williams DR (2017). Imaging individual neurons in the retinal ganglion cell layer of the living eye. PNAS. doi:10.1073/pnas.1613445114 PDF
  • Sharma R, Williams DR, Palczewska G, Palczewski K, Hunter JJ (2016). Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye. Invest Ophthalmol Vis Sci. 57(2):632-46. doi: 10.1167/iovs.15-17961. PMID: 26903224 PDF
  • Guevara-Torres A, Williams DR, and Schallek JB (2015). Imaging translucent cell bodies in the living mouse retina without contrast agents. Biomed. Opt. Express 6, 2106-2119. PDF
  • Zhang J, Yang Q, Saito K, Nozato K, Roorda A, Williams DR, and Rossi EA (2015). An adaptive optics imaging system designed for clinical use: publisher's note. Biomed. Opt. Express 6, 2864-2864. PDF
  • Yin L, Masella B, Dalkara D, Zhang J, Flannery JG, Schaffer DV, Williams DR, Merigan WH (2014). Imaging light responses of foveal ganglion cells in the living macaque eye. J Neurosci. ;34(19):6596-605. doi: 10.1523/JNEUROSCI.4438-13.2014. PDF
  • Schallek J., Geng, Y., Nguyen, H., and Williams, D.R. (2013). Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthal Vis Sci. PDF
  • Geng, Y., Dubra, A., Yin, L., Merigan, W.H., Sharma, R., Libby, R.T., and Williams, D.R. (2012). Adaptive optics retinal imaging in the living mouse eye. Biomed Opt Express 3(4), 715-734. PDF
  • Williams, D.R. (2011). Imaging single cells in the living retina. Vision Research, 51(13):1379-1396. doi: 10.1016. PDF
  • Hunter, J.J., Masella, B., Dubra, A., Sharma, R., Yin, L., Merigan, W.H., Palczewska, G., Palczewski, K., Williams, D.R. (2011). Images of photoreceptors in living primate eyes using adaptive optics Two-photon ophthalmoscopy. Biomedical Optics Express. 2(1):139-148. PDF
  • Morgan, J.I.W., Dubra, A., Wolfe, R., Merigan, W.H., Williams, D.R. (2009). In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. IOVS, 50(3), 1350-1359. PDF
  • Brainard, D.H., Williams, D.R., Hofer, H. (2008). Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. Journal of Vision, 8(5):15,1-23. PDF
  • Morgan, J.I.W., Hunter, J.J., Masella, B., Wolfe, R., Gray, D.C., Merigan, W.H., Delori, F.C., Williams, D.R. (2008). Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium. IOVS, 49(8), 3715-3729. PDF
  • Gray, D.C., Wolfe, R., Gee, B.P., Scoles, D., Geng, Y., Masella, B.D., Dubra, A., Luque, S., Williams, D.R., Merigan, W.H. (2008). In vivo imaging of the fine structure of rhodamine labeled macaque retinal ganglion cells. IOVS, 49(1), 467-73. PDF
  • Chen, L., Artal, P., Gutierrez, D., Williams, D. R. (2007). Neural compensation for the best aberration correction. Journal of Vision, 7(10), Article 9, 1-9. PDF
  • Sabesan, R., Jeong, TM., Cox, I., Williams, D.R., Yoon, GY. (2007). Vision improvement by correcting higher-order aberrations with customized soft contact lenses in keratoconic eyes. Optics Letters, 32(8), 1000-1002. PDF
  • Gray, D., Merigan, W., Wolfing, J., Gee, B., Porter, J., Dubra, A., Twietmeyer, T., Ahmad, K., Tumbar, R., Reinholz, F., Williams, D.R. (2006). In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Optics Express, 14(16), 7144-7158. PDF
  • Chen, L., Kruger, P., Hofer, H., Singer, B., Williams, D.R. (2006). Accommodation with higher-order monochromatic aberrations corrected with adaptive optics. J. Opt. Soc. Am. A, 23(1). PDF
  • Chen, L., Singer, B., Guirao, A., Porter, J., Williams, D.R. (2005). Image metrics for predicting subjective image quality. Optometry and Vision Science, 82(5), 358-369. PDF
  • Putnam, N., Hofer, H., Doble, N., Chen, L., Carroll, J., Williams, D.R. (2005). The locus of fixation and the foveal cone mosaic. Journal of Vision, 0, 1-8. PDF
  • Hofer, H., Singer, B., Williams, D.R. (2005). Different sensations from cones with the same photopigment. Journal of Vision, 444-454. PDF
  • Hofer, H., Carroll, J., Neitz, J., Neitz, M., Williams, D.R. (2005). Organization of the human trichromatic cone mosaic. J Neurosci., 25(42):9669-9679. PDF
  • Yoon, G.Y., MacRae, S., Williams, D.R., Cox, I. (2005). Causes of spherical aberration induced by laser refractive surgery. J. Cataract Refractive Surgery, 31:127-135. PDF
  • Carroll, J., Neitz, M., Hofer, H., Neitz, J., Williams, D.R. (2004). Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. Proceedings of the National Academy of Sciences, 101(22), 8461-8466. PDF
  • Artal, P., Chen, L., Fernandez, E.J., Singer, B., Manzanera, S., Williams, D.R. (2004). Neural compensation for the eye's optical aberrations. JOV, 4, 281-287. PDF
  • Roorda, A., Williams, D.R. (2002). Optical fiber properties of individual human cones. Journal of Vision, 2, 404-412. PDF
  • Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., Williams, D.R. (2002). Color Perception is Mediated by a Plastic Neural Mechanism that Remains Adjustable in Adults. Neuron, 35, 783-792. PDF
  • Yoon, G.Y., Williams, D.R., (2002). Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J. Opt. Soc. Am. A, 19(2), 266-275. PDF
  • Artal, P., Guirao, A., Berrio, E., Williams, D.R., (2001). Compensation of corneal aberrations by the internal optics in the human eye. Journal of Vision, (R1), 1-8. PDF
  • H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, (2001). Improvement in retinal image quality with dynamic correction of the eye's aberrations. Optics Express 8, 631-643. PDF
  • Porter, J., Guirao, A., Cox, I., Williams, D.R. (2001). Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A., 18(8), 1793-1803. PDF
  • Hofer, H., Artal, P., Singer, B., Aragón, J.L., Williams, D.R. (2001). Dynamics of the eye's wave aberration, J. Opt. Soc. Am. A. 18, 497-506. PDF
  • Williams, D.R., Yoon, G.Y., Porter, J., Guirao, A., Hofer, H., Cox, I., (2000). Visual benefit of correcting higher order aberrations of the eye. J. of Refractive Surgery. 16, S554-S559. PDF
  • McMahon, M.J., Lankheet, M.J.M., Lennie, P., Williams, D.R.(2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. J. Neuroscience. 20(5):2043-2053. PDF
  • Brainard, D.H., Roorda, A., Yamauchi, Y., Calderone, H.B., Metha, A., Neitz, M., Neitz, J., Williams, D.R., and Jacobs, G.H. (2000). Functional Consequences of the Relative Numbers of L and M Cones. J. Opt. Soc. Am. A. 17, 607-614. PDF
  • Roorda, A. and Williams, D.R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397, 520-522. PDF
  • Liang, J., Williams, D.R., and Miller, D.T. (1997). Supernormal vision and high resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A., 14, 2884-2892. PDF
  • Liang, J. and Williams, D.R. (1997). Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A., 14, 2873-2883. PDF
  • Miller, D., Williams, D.R., Morris, G.M., and Liang, J. (1996). Images of cone photoreceptors in the living human eye. Vision Res., 36, 1067-1079 PDF
  • Williams, D., Sekiguchi, N., Brainard, D. (1993). Color, contrast sensitivity, and the cone mosaic. Proc. Natl. Acad. Sci. USA, 90, 9770-9777. PDF
  • Sekiguchi, N., Williams, D.R., Brainard, D.H. (1993). Aberration-free measurements of isoluminant contrast sensitivity. J. Opt. Soc. Am. A., 10, 2105- 2117. PDF
  • Packer, O., Williams, D.R. (1992). Blurring by fixational eye movements. Vision Res., 32, 1931-1939. PDF
  • MacLeod, D.I.A., Williams, D.R., Makous, W. (1992). A visual nonlinearity fed by single cones. Vision Res., 32, 347-363. PDF
  • Williams, D.R. (1988). Topography of the foveal cone mosaic in the living human eye. Vision Res., 28, 433-454. PDF
  • Williams, D.R., Coletta, N.J. (1987). Cone spacing and the visual resolution limit. J. Opt. Soc. Am., 4, 1514-1523. PDF
  • Krauskopf, J., Williams, D.R., Mandler, M.B., Brown, A.M. (1986). Higher order color mechanisms. Vision Res, 26, 23-32. PDF
  • Williams, D.R. (1985). Visibility of interference fringes near the resolution limit. J. Opt. Soc. Am. A, 2, 1087-1093. PDF
  • Williams, D.R. (1985). Aliasing in human foveal vision. Vision Res., 25, 195-205. PDF
  • Hayhoe, M.M., Williams, D.R. (1984). Disappearance of afterimages at 'impossible' locations in space. Perception, 13, 455-459. PDF
  • Williams, D.R., Collier, R. (1983). Consequences of spatial sampling by a human photoreceptor mosaic. Science, 221, 385-387. PDF
  • Krauskopf, J., Williams, D.R., Heeley, D.W. (1982). Cardinal directions in color space. Vision Res., 22, 1123-1131. PDF
  • Williams, D.R., MacLeod, D.I.A., Hayhoe, M.M. (1981a). Punctate sensitivity of the blue sensitive mechanism. Vision Res., 21, 1357-1376. PDF
  • Williams, D.R., MacLeod, D.I.A., Hayhoe, M.M. (1981b). Foveal tritanopia. Vision Res., 21, 1341-1356. PDF
  • Williams, D.R. (1980). Visual consequences of the foveal pit. Invest. Ophthalmol., 19, 653-667. PDF

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.